This paper studies flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate.Three types of nanopaiticles-Cu,Al_(2)O_(3) and CuO-with water-based nanofluids are considered.The governing eq...This paper studies flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate.Three types of nanopaiticles-Cu,Al_(2)O_(3) and CuO-with water-based nanofluids are considered.The governing equations are reduced by Von Karman transformation and then solved by the homotopy analysis method(HAM),which is in close agreement with numerical results.Results indicate that with increasing in stretching strength parameter,the skin friction and the local Nusselt number,the velocity in radial and axial directions increase,whereas the velocity in tangential direction and the thermal boundary'layer thickness decrease,respectively.Moreover,the effects of volume fraction and types of nanofluids on velocity and temperature fields are also analyzed.展开更多
基金supported by National Natural Science Foundations of China(Nos.51276014,51476191).
文摘This paper studies flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate.Three types of nanopaiticles-Cu,Al_(2)O_(3) and CuO-with water-based nanofluids are considered.The governing equations are reduced by Von Karman transformation and then solved by the homotopy analysis method(HAM),which is in close agreement with numerical results.Results indicate that with increasing in stretching strength parameter,the skin friction and the local Nusselt number,the velocity in radial and axial directions increase,whereas the velocity in tangential direction and the thermal boundary'layer thickness decrease,respectively.Moreover,the effects of volume fraction and types of nanofluids on velocity and temperature fields are also analyzed.