期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
How do high-voltage cathode and PEO electrolyte get along well?EIS analysis mechanism&potentiometric control strategy
1
作者 Xiaodong Bai chaoliang zheng +4 位作者 Heng Zhang Jian Liu Panpan Wang Baojia Xia Jianling Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期424-436,共13页
PEO-based all-solid-state electrolytes are extensively utilized and researched owing to their exceptional safety,low-mass-density,and cost-effectiveness.However,the low oxidation potential of PEO makes the interface p... PEO-based all-solid-state electrolytes are extensively utilized and researched owing to their exceptional safety,low-mass-density,and cost-effectiveness.However,the low oxidation potential of PEO makes the interface problem with the high-voltage cathode extremely severe.In this work,the impedance of PEO-based all-solid-state batteries with high-voltage cathode(NCM811)was studied at different potentials.The Nyquist plots displayed a gyrate arc at low-frequencies for NCM811/PEO interface.Based on the kinetic modeling,it was deduced that there is a decomposition reaction of PEO-matrix in addition to de-embedded reaction of NCM811,and the PEO intermediate product(dehydra-PEO)adsorbed on the electrode surface leading to low-frequency inductive arcs.Furthermore,the distribution of relaxation time shows the dehydra-PEO results in the kinetic tardiness of the charge transfer process in the temporal dimension.Hence,an artificial interface layer(CEI_(x))was modified on the surface of NCM811 to regulate the potential of cathode/electrolyte interface to prevent the high-voltage deterioration of PEO.NCM/CEI_(x)/PEO batteries exhibit capacity retentions of 96.0%,84.6%,and 76.8%after undergoing 100 cycles at cut-off voltages of 4.1,4.2,and 4.3 V,respectively.Therefore,here the failure mechanism of high-voltage PEO electrolyte is investigated by EIS and a proposed solving strategy is presented. 展开更多
关键词 PEo-based electrolyte High-voltage cathode Electrochemical impedance spectroscopy Mechanism research Electrochemical characteristic
下载PDF
One-step electrochemical in-situ Li doping and LiF coating enable ultra-stable cathode for sodium ion batteries
2
作者 Jiameng Feng chaoliang zheng +1 位作者 De Fang Jianling Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期228-238,I0005,共12页
Despite of the higher energy density and inexpensive characteristics,commercialization of layered oxide cathodes for sodium ion batteries(SIBs)is limited due to the lack of structural stability at the high voltage.Her... Despite of the higher energy density and inexpensive characteristics,commercialization of layered oxide cathodes for sodium ion batteries(SIBs)is limited due to the lack of structural stability at the high voltage.Herein,the one-step electrochemical in-situ Li doping and LiF coating are successfully achieved to obtain an advanced Na0.79Lix[Li_(0.13)Ni_(0.20)Mn_(0.67)]O_(2)@LiF(NaLi-LNM@LiF)cathode with superlattice structure.The results demonstrate that the Li^(+)doped into the alkali metal layer by electrochemical cycling act as"pillars"in the form of Li-Li dimers to stabilize the layered structure.The supplementation of Li to the superlattice structure inhibits the dissolution of transition metal ions and lattice mismatch.Furthermore,the in-situ LiF coating restrains side reactions,reduces surface cracks,and greatly improves the cycling stability.The electrochemical in-situ modification strategy significantly enhances the electrochemical performance of the half-cell.The NaLi-LNM@LiF exhibits high reversible specific capacity(170.6 m A h g^(-1)at 0.05 C),outstanding capacity retention(92.65%after 200 cycles at 0.5 C)and excellent rate performance(80 mA h g^(-1)at 7 C)in a wide voltage range of 1.5-4.5 V.This novel method of in-situ modification by electrochemical process will provide a guidance for the rational design of cathode materials for SIBs. 展开更多
关键词 Sodium ion batteries Layered oxides In-situ Li doping In-situ LiF coating Superlattice structure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部