The design of novel materials for sulfur dioxide(SO_(2))capture and conversion with considerable efficiency under mild conditions is of great significance for human health and environmental protection yet highly chall...The design of novel materials for sulfur dioxide(SO_(2))capture and conversion with considerable efficiency under mild conditions is of great significance for human health and environmental protection yet highly challenging.Herein,we report a series of triazine-based multicomponent metallacages via coordination-driven self-assembly of 2,4,6-tri(4-pyridyl)-1,3,5-triazine,cis-Pt(PEt3)2(OTf)2 and different tetracarboxylic ligands.As the increase of the length of the tetracarboxylates,the structures of the metallacages change from pyramids to extended octahedrons.Owing to their N-rich structure,these metallacages are further used for selective SO_(2)capture,showing good adsorption capacity and remarkable SO_(2)/CO_(2)selectivity in ambient conditions,suggesting their potential applications toward real flue gas desulfurization.The metallacages are further employed for the conversion of SO_(2)into value-added compounds,showing exceptional efficiency even dilute SO_(2)is used as the reactant.This study represents a type of structure-tunable triazinebased metallacages for SO_(2)capture and conversion,which will pave the way on the applications of metal-organic complexes for gas adsorption.展开更多
基金China Postdoctoral Science Foundation,Grant/Award Number:2021M702588Shaanxi Provincial Natural Science Foundation of China,Grant/Award Number:2023-JC-QN-0105+1 种基金National Natural Science Foundation of China,Grant/Award Numbers:22171219,22222112Innovation Talent Promotion Plan of Shaanxi Province for Science and Technology Innovation Team„Grant/Award Number:2023-CX-TD-51。
文摘The design of novel materials for sulfur dioxide(SO_(2))capture and conversion with considerable efficiency under mild conditions is of great significance for human health and environmental protection yet highly challenging.Herein,we report a series of triazine-based multicomponent metallacages via coordination-driven self-assembly of 2,4,6-tri(4-pyridyl)-1,3,5-triazine,cis-Pt(PEt3)2(OTf)2 and different tetracarboxylic ligands.As the increase of the length of the tetracarboxylates,the structures of the metallacages change from pyramids to extended octahedrons.Owing to their N-rich structure,these metallacages are further used for selective SO_(2)capture,showing good adsorption capacity and remarkable SO_(2)/CO_(2)selectivity in ambient conditions,suggesting their potential applications toward real flue gas desulfurization.The metallacages are further employed for the conversion of SO_(2)into value-added compounds,showing exceptional efficiency even dilute SO_(2)is used as the reactant.This study represents a type of structure-tunable triazinebased metallacages for SO_(2)capture and conversion,which will pave the way on the applications of metal-organic complexes for gas adsorption.