High-resolution time-and angle-resolved photoemission measurements were conducted on the topological insulator ZrTe_(5).With strong femtosecond photoexcitation,a possible ultrafast phase transition from a weak to a st...High-resolution time-and angle-resolved photoemission measurements were conducted on the topological insulator ZrTe_(5).With strong femtosecond photoexcitation,a possible ultrafast phase transition from a weak to a strong topological insulating phase was experimentally realized by recovering the energy gap inversion in a time scale that was shorter than 0.15 ps.This photoinduced transient strong topological phase can last longer than 2 ps at the highest excitation fluence studied,and it cannot be attributed to the photoinduced heating of electrons or modification of the conduction band filling.Additionally,the measured unoccupied electronic states are consistent with the first-principles calculation based on experimental crystal lattice constants,which favor a strong topological insulating phase.These findings provide new insights into the longstanding controversy about the strong and weak topological properties in ZrTe_(5),and they suggest that many-body effects including electron–electron interactions must be taken into account to understand the equilibrium weak topological insulating phase in ZrTe_(5).展开更多
Switched reluctance motor(SRM)usually adopts Direct Instantaneous Torque Control(DITC)to suppress torque ripple.However,due to the fixed turn-on angle and the control mode of the two-phase exchange region,the conventi...Switched reluctance motor(SRM)usually adopts Direct Instantaneous Torque Control(DITC)to suppress torque ripple.However,due to the fixed turn-on angle and the control mode of the two-phase exchange region,the conventional DITC control method has low adaptability in different working conditions,which will lead to large torque ripple.For this problem,an improved DITC control method based on turn-on angle optimization is proposed in this paper.Firstly,the improved BP neural network is used to construct a nonlinear torque model,so that the torque can be accurately fed back in real time.Secondly,the turn-on angle optimization algorithm based on improved GRNN neural network is established,so that the turn-on angle can be adjusted adaptively online.Then,according to the magnitude of inductance change rate,the two-phase exchange region is divided into two regions,and the phase with larger inductance change rate and current is selected to provide torque in the sub-regions.Finally,taking a 3-phase 6/20 SRM as example,simulation and experimental verification are carried out to verify the effectiveness of this method.展开更多
In view of the large current peak and torque ripple in the actual current chopping control of switched reluctance motor,a segmented PWM duty cycle analysis method of switched reluctance motor based on current chopping...In view of the large current peak and torque ripple in the actual current chopping control of switched reluctance motor,a segmented PWM duty cycle analysis method of switched reluctance motor based on current chopping control is proposed in this paper.The method realizes the control of the winding current by adjusting the average voltage of the two ends of the winding in one cycle through the PWM duty cycle.At the same time,according to the inductance linear model,the conduction phase is divided into a small inductance region and an inductance rising region,and the analytical formulas of PWM duty cycle in the two regions are deduced respectively.Finally,through matlab/simulink simulation and motor platform experiment,the current chopping control is compared with the segmented PWM duty cycle analysis method in this paper.Simulation and experimental results show that the segmented PWM duty cycle analysis method can effectively reduce the current peak and torque ripple,and has high practical application value.展开更多
In this paper,a controllable leakage flux reverse salient permanent magnet synchronous motor(CLF-RSPMSM)is designed,which has the advantages of wide speed range and low irreversible demagnetization risk.Firstly,the pr...In this paper,a controllable leakage flux reverse salient permanent magnet synchronous motor(CLF-RSPMSM)is designed,which has the advantages of wide speed range and low irreversible demagnetization risk.Firstly,the principle of controllable leakage flux and reverse saliency effect is introduced,and the design of the rotor flux barrier is emphatically discussed.Secondly,multiple design variables are stratified by the comprehensive sensitivity method,and the main variables are screened out.Then the relationship between the main variables and the optimization goal is discussed according to the response surface diagram.Thirdly,a sequential nonlinear programming algorithm(SNP)is used to optimize the three optimization objectives comprehensively.Finally,the electromagnetic performance of the proposed motor is compared with the initial IPM motor,the mechanical strength of the proposed rotor is analyzed,and the results verify the effectiveness of the design and optimization method of the proposed motor.展开更多
A novel mechanical variable-leakage-flux interior permanent magnet machine(MVLF-IPMM)is proposed for electric vehicles(EVs)in this paper,which employs a mechanical flux-regulating device and auxiliary rotatable magnet...A novel mechanical variable-leakage-flux interior permanent magnet machine(MVLF-IPMM)is proposed for electric vehicles(EVs)in this paper,which employs a mechanical flux-regulating device and auxiliary rotatable magnetic poles.The magnetic poles acting as the flux adjustors can be rotated by the additional device to vary the leakage flux in magnetic circuit and realize the adjustment of the PM flux linkage.Due to the flux-regulating effect,the flux distribution in this machine is complex and changeable.Therefore,the working principle is illustrated in detail.To obtain the perfect coordination between the dominant magnetic poles and auxiliary magnetic poles,a multi-objective optimization method is presented based on the parameter sensitivity analysis combining with the Coefficient of Prognosis(CoP).Then,some design parameters with strong sensitive are selected by the sensitivity analysis and the initial model of the proposed motor is optimized by utilizing the multi-objective genetic algorithm(MOGA).According to the result of the optimization,the machine performances of the initial and the optimal design under the different flux states are compared and analyzed to verify the validity of the new variable-flux motor and the optimization method.展开更多
We reveal the electronic structure in Yb Cd_(2)Sb_(2),a thermoelectric material,by angle-resolved photoemission spectroscopy(ARPES)and time-resolved ARPES(tr ARPES).Specifically,three bulk bands at the vicinity of the...We reveal the electronic structure in Yb Cd_(2)Sb_(2),a thermoelectric material,by angle-resolved photoemission spectroscopy(ARPES)and time-resolved ARPES(tr ARPES).Specifically,three bulk bands at the vicinity of the Fermi level are evidenced near the Brillouin zone center,consistent with the density functional theory(DFT)calculation.It is interesting that the spin-unpolarized bulk bands respond unexpectedly to right-and left-handed circularly polarized probe.In addition,a hole band of surface states,which is not sensitive to the polarization of the probe beam and is not expected from the DFT calculation,is identified.We find that the non-equilibrium quasiparticle recovery rate is much smaller in the surface states than that of the bulk states.Our results demonstrate that the surface states can be distinguished from the bulk ones from a view of time scale in the nonequilibrium physics.展开更多
Using high-resolution angle-resolved and time-resolved photoemission spectroscopy,we have studied the low-energy band structures in occupied and unoccupied states of three ternary compounds GeBi_(2)Te_(4),SnBi_(2)Te_(...Using high-resolution angle-resolved and time-resolved photoemission spectroscopy,we have studied the low-energy band structures in occupied and unoccupied states of three ternary compounds GeBi_(2)Te_(4),SnBi_(2)Te_(4) and Sn_(0.571)Bi_(2.286)Se_(4) near the Fermi level.In previously confirmed topological insulator GeBi_(2)Te_(4) compounds,we confirmed the existence of the Dirac surface state and found that the bulk energy gap is much larger than that in the first-principles calculations.In SnBi_(2)Te_(4) compounds,the Dirac surface state was observed,consistent with the first-principles calculations,indicating that it is a topological insulator.The experimental detected bulk gap is a little bit larger than that in calculations.In Sn_(0.571)Bi_(2.286)Se_(4) compounds,our measurements suggest that this nonstoichiometric compound is a topological insulator although the stoichiometric SnBi_(2)Se_(4) compound was proposed to be topological trivial.展开更多
High-resolution angle-resolved photoemission measurements were taken on FeSe;S;(x=0,0.04,and 0.08)superconductors.With an ultrahigh energy resolution of 0.4 meV,unusual two hole bands near the Brillouin-zone center,wh...High-resolution angle-resolved photoemission measurements were taken on FeSe;S;(x=0,0.04,and 0.08)superconductors.With an ultrahigh energy resolution of 0.4 meV,unusual two hole bands near the Brillouin-zone center,which was possibly a result of additional symmetry breaking,were identified in all the sulfur-substituted samples.In addition,in both of the hole bands highly anisotropic superconducting gaps with resolution limited nodes were evidenced.We find that the larger superconducting gap on the outer hole band is reduced linearly to the nematic transition temperature while the gap on the inner hole is nearly S-substitution independent.Our observations strongly suggest that the superconducting gap increases with enhanced nematicity although the superconducting transition temperature is not only governed by the pairing strength,demonstrating strong constraints on theories in the FeSe family.展开更多
基金support from the National Key R&D Program of China(Grant Nos.2021YFA1400202 and 2021YFA1401800)the National Natural Science Foundation of China(Grant Nos.12141404 and 11974243)+3 种基金the Natural Science Foundation of Shanghai(Grant Nos.22ZR1479700 and 23XD1422200)support from the China Postdoctoral Science Foundation(Grant No.2022M722108)support from the National Key R&D Program of China(Grant Nos.2022YFA1402400 and 2021YFA1400100)the National Natural Science Foundation of China(Grant No.12074248)。
文摘High-resolution time-and angle-resolved photoemission measurements were conducted on the topological insulator ZrTe_(5).With strong femtosecond photoexcitation,a possible ultrafast phase transition from a weak to a strong topological insulating phase was experimentally realized by recovering the energy gap inversion in a time scale that was shorter than 0.15 ps.This photoinduced transient strong topological phase can last longer than 2 ps at the highest excitation fluence studied,and it cannot be attributed to the photoinduced heating of electrons or modification of the conduction band filling.Additionally,the measured unoccupied electronic states are consistent with the first-principles calculation based on experimental crystal lattice constants,which favor a strong topological insulating phase.These findings provide new insights into the longstanding controversy about the strong and weak topological properties in ZrTe_(5),and they suggest that many-body effects including electron–electron interactions must be taken into account to understand the equilibrium weak topological insulating phase in ZrTe_(5).
基金supported by National Natural Science Foundation of China under Grant 52167005Science and Technology Research Project of Jiangxi Provincial Department of Education under Grant GJJ200826。
文摘Switched reluctance motor(SRM)usually adopts Direct Instantaneous Torque Control(DITC)to suppress torque ripple.However,due to the fixed turn-on angle and the control mode of the two-phase exchange region,the conventional DITC control method has low adaptability in different working conditions,which will lead to large torque ripple.For this problem,an improved DITC control method based on turn-on angle optimization is proposed in this paper.Firstly,the improved BP neural network is used to construct a nonlinear torque model,so that the torque can be accurately fed back in real time.Secondly,the turn-on angle optimization algorithm based on improved GRNN neural network is established,so that the turn-on angle can be adjusted adaptively online.Then,according to the magnitude of inductance change rate,the two-phase exchange region is divided into two regions,and the phase with larger inductance change rate and current is selected to provide torque in the sub-regions.Finally,taking a 3-phase 6/20 SRM as example,simulation and experimental verification are carried out to verify the effectiveness of this method.
基金supported by National Natural Science Foundation of China under Grant 52167005Science and Technology Research Project of Jiangxi Provincial Department of Education under Grant GJJ200826。
文摘In view of the large current peak and torque ripple in the actual current chopping control of switched reluctance motor,a segmented PWM duty cycle analysis method of switched reluctance motor based on current chopping control is proposed in this paper.The method realizes the control of the winding current by adjusting the average voltage of the two ends of the winding in one cycle through the PWM duty cycle.At the same time,according to the inductance linear model,the conduction phase is divided into a small inductance region and an inductance rising region,and the analytical formulas of PWM duty cycle in the two regions are deduced respectively.Finally,through matlab/simulink simulation and motor platform experiment,the current chopping control is compared with the segmented PWM duty cycle analysis method in this paper.Simulation and experimental results show that the segmented PWM duty cycle analysis method can effectively reduce the current peak and torque ripple,and has high practical application value.
基金This work was supported by the National Natural Science Foundation of China under Grant no.52067008in part by the Plan Project of Jiangxi Province of P.R.China under grant no.GJJ160598 and 20181BAB206035,and in part by the Program of Qingjiang Excellent Young Talents.
文摘In this paper,a controllable leakage flux reverse salient permanent magnet synchronous motor(CLF-RSPMSM)is designed,which has the advantages of wide speed range and low irreversible demagnetization risk.Firstly,the principle of controllable leakage flux and reverse saliency effect is introduced,and the design of the rotor flux barrier is emphatically discussed.Secondly,multiple design variables are stratified by the comprehensive sensitivity method,and the main variables are screened out.Then the relationship between the main variables and the optimization goal is discussed according to the response surface diagram.Thirdly,a sequential nonlinear programming algorithm(SNP)is used to optimize the three optimization objectives comprehensively.Finally,the electromagnetic performance of the proposed motor is compared with the initial IPM motor,the mechanical strength of the proposed rotor is analyzed,and the results verify the effectiveness of the design and optimization method of the proposed motor.
基金the National Natural Science Foundation of China under grant no.51767009in part by the Plan Project of Jiangxi Province of P.R.China under grant no.GJJ160598 and 20181BAB206035in part by the Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology(JXUST)。
文摘A novel mechanical variable-leakage-flux interior permanent magnet machine(MVLF-IPMM)is proposed for electric vehicles(EVs)in this paper,which employs a mechanical flux-regulating device and auxiliary rotatable magnetic poles.The magnetic poles acting as the flux adjustors can be rotated by the additional device to vary the leakage flux in magnetic circuit and realize the adjustment of the PM flux linkage.Due to the flux-regulating effect,the flux distribution in this machine is complex and changeable.Therefore,the working principle is illustrated in detail.To obtain the perfect coordination between the dominant magnetic poles and auxiliary magnetic poles,a multi-objective optimization method is presented based on the parameter sensitivity analysis combining with the Coefficient of Prognosis(CoP).Then,some design parameters with strong sensitive are selected by the sensitivity analysis and the initial model of the proposed motor is optimized by utilizing the multi-objective genetic algorithm(MOGA).According to the result of the optimization,the machine performances of the initial and the optimal design under the different flux states are compared and analyzed to verify the validity of the new variable-flux motor and the optimization method.
基金support from the National Natural Science Foundation of China(Grant No.11974243)support from the National Natural Science Foundation of China(Grant No.11521404)+1 种基金additional support from a Shanghai talent programsupport by the Natural Science Foundation of Shanghai,China(Grant No.17ZR1443300)。
文摘We reveal the electronic structure in Yb Cd_(2)Sb_(2),a thermoelectric material,by angle-resolved photoemission spectroscopy(ARPES)and time-resolved ARPES(tr ARPES).Specifically,three bulk bands at the vicinity of the Fermi level are evidenced near the Brillouin zone center,consistent with the density functional theory(DFT)calculation.It is interesting that the spin-unpolarized bulk bands respond unexpectedly to right-and left-handed circularly polarized probe.In addition,a hole band of surface states,which is not sensitive to the polarization of the probe beam and is not expected from the DFT calculation,is identified.We find that the non-equilibrium quasiparticle recovery rate is much smaller in the surface states than that of the bulk states.Our results demonstrate that the surface states can be distinguished from the bulk ones from a view of time scale in the nonequilibrium physics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11521404,12074248,11974243,and 11804194)additional support from a Shanghai talent program。
文摘Using high-resolution angle-resolved and time-resolved photoemission spectroscopy,we have studied the low-energy band structures in occupied and unoccupied states of three ternary compounds GeBi_(2)Te_(4),SnBi_(2)Te_(4) and Sn_(0.571)Bi_(2.286)Se_(4) near the Fermi level.In previously confirmed topological insulator GeBi_(2)Te_(4) compounds,we confirmed the existence of the Dirac surface state and found that the bulk energy gap is much larger than that in the first-principles calculations.In SnBi_(2)Te_(4) compounds,the Dirac surface state was observed,consistent with the first-principles calculations,indicating that it is a topological insulator.The experimental detected bulk gap is a little bit larger than that in calculations.In Sn_(0.571)Bi_(2.286)Se_(4) compounds,our measurements suggest that this nonstoichiometric compound is a topological insulator although the stoichiometric SnBi_(2)Se_(4) compound was proposed to be topological trivial.
基金supports from the National Key R&D Program of China(Grant No.2021YFA1401800)the National Natural Science Foundation of China(Grant Nos.11974243 and 12141404)+3 种基金support from a Shanghai talent programsupport from the National Natural Science Foundation of China(Grant No.12074248)Fudan University was supported by the Innovation Program of Shanghai Municipal Education Commission(Grant No.2017–01-07-00-07-E00018)the National Natural Science Foundation of China(Grant No.11874119)。
文摘High-resolution angle-resolved photoemission measurements were taken on FeSe;S;(x=0,0.04,and 0.08)superconductors.With an ultrahigh energy resolution of 0.4 meV,unusual two hole bands near the Brillouin-zone center,which was possibly a result of additional symmetry breaking,were identified in all the sulfur-substituted samples.In addition,in both of the hole bands highly anisotropic superconducting gaps with resolution limited nodes were evidenced.We find that the larger superconducting gap on the outer hole band is reduced linearly to the nematic transition temperature while the gap on the inner hole is nearly S-substitution independent.Our observations strongly suggest that the superconducting gap increases with enhanced nematicity although the superconducting transition temperature is not only governed by the pairing strength,demonstrating strong constraints on theories in the FeSe family.