Robots in a swarm are programmed with individual behaviors but then interactions with the environment and other robots produce more complex, emergent swarm behaviors. One discriminating feature of the emergent behavio...Robots in a swarm are programmed with individual behaviors but then interactions with the environment and other robots produce more complex, emergent swarm behaviors. One discriminating feature of the emergent behavior is the local distribution of robots in any given region. In this work, we show how local observations of the robot distribution can be correlated to the environment being explored and hence the location of openings or obstructions can be inferred. The correlation is achieved here with a simple, single-layer neural network that generates physically intuitive weights and provides a degree of robustness by allowing for variation in the environment and number of robots in the swarm. The robots are simulated assuming random motion with no communication, a minimalist model in robot sophistication, to explore the viability of cooperative sensing. We culminate our work with a demonstration of how the local distribution of robots in an unknown, office-like environment can be used to locate unobstructed exits.展开更多
In this paper,we present a technique for ensuring the stability of a large class of adaptively controlled systems.We combine IQC models of both the controlled system and the controller with a method of filtering contr...In this paper,we present a technique for ensuring the stability of a large class of adaptively controlled systems.We combine IQC models of both the controlled system and the controller with a method of filtering control parameter updates to ensure stable behavior of the controlled system under adaptation of the controller.We present a specific application to a system that uses recurrent neural networks adapted via reinforcement learning techniques.The work presented extends earlier works on stable reinforcement learning with neural networks.Specifically,we apply an improved IQC analysis for RNNs with time-varying weights and evaluate the approach on more complex control system.展开更多
文摘Robots in a swarm are programmed with individual behaviors but then interactions with the environment and other robots produce more complex, emergent swarm behaviors. One discriminating feature of the emergent behavior is the local distribution of robots in any given region. In this work, we show how local observations of the robot distribution can be correlated to the environment being explored and hence the location of openings or obstructions can be inferred. The correlation is achieved here with a simple, single-layer neural network that generates physically intuitive weights and provides a degree of robustness by allowing for variation in the environment and number of robots in the swarm. The robots are simulated assuming random motion with no communication, a minimalist model in robot sophistication, to explore the viability of cooperative sensing. We culminate our work with a demonstration of how the local distribution of robots in an unknown, office-like environment can be used to locate unobstructed exits.
基金supported by the National Natural Science Foundation (No.0245291)
文摘In this paper,we present a technique for ensuring the stability of a large class of adaptively controlled systems.We combine IQC models of both the controlled system and the controller with a method of filtering control parameter updates to ensure stable behavior of the controlled system under adaptation of the controller.We present a specific application to a system that uses recurrent neural networks adapted via reinforcement learning techniques.The work presented extends earlier works on stable reinforcement learning with neural networks.Specifically,we apply an improved IQC analysis for RNNs with time-varying weights and evaluate the approach on more complex control system.