Hairy vetch (Vicia villosa Roth.) has been recognized as a good candidate for weed suppressive mulch in organic no-till cropping systems. In our study, the allelopathic potential of hairy vetch, fall rye (Secale cerea...Hairy vetch (Vicia villosa Roth.) has been recognized as a good candidate for weed suppressive mulch in organic no-till cropping systems. In our study, the allelopathic potential of hairy vetch, fall rye (Secale cereale L.) and winter wheat (Triticum aestivum L.) (extracted species) were evaluated at both vegetative and reproductive developmental stages (extract stage) based on the germination and radicle elongation of five response species using aqueous extracts in soil microcosms. Our study found hairy vetch shoot extract to have little allelopathic potential compared to fall rye or winter wheat, both species for which the allelopathic potential is well documented. Interestingly, hairy vetch was the only extracted species to increase in allelopathic suppression of radicle elongation at the reproductive stage when plant biomass is near maximum. This result was conceivably due to the increased concentration of the putative allelochemical cyanamide in reproductive tissue. Chemical inhibition of radicle elongation in this extract, however, was only observed in the domesticated response species wheat (Triticum aestivum L.) and canola (Brassica napus L.). The allelopathic effect on germination varied and depended on extracted species, extract stage, and response species;whereas the effect on radicle elongation was similar among extracted species, yet unique within response species. This research demonstrated that allelopathy studies should include multiple allelopathic and response species to accurately quantify the magnitude of chemical effects among allelopathic species and to rule out potential phytotoxic chemical defense/detoxification mechanisms that exist in some response species.展开更多
文摘Hairy vetch (Vicia villosa Roth.) has been recognized as a good candidate for weed suppressive mulch in organic no-till cropping systems. In our study, the allelopathic potential of hairy vetch, fall rye (Secale cereale L.) and winter wheat (Triticum aestivum L.) (extracted species) were evaluated at both vegetative and reproductive developmental stages (extract stage) based on the germination and radicle elongation of five response species using aqueous extracts in soil microcosms. Our study found hairy vetch shoot extract to have little allelopathic potential compared to fall rye or winter wheat, both species for which the allelopathic potential is well documented. Interestingly, hairy vetch was the only extracted species to increase in allelopathic suppression of radicle elongation at the reproductive stage when plant biomass is near maximum. This result was conceivably due to the increased concentration of the putative allelochemical cyanamide in reproductive tissue. Chemical inhibition of radicle elongation in this extract, however, was only observed in the domesticated response species wheat (Triticum aestivum L.) and canola (Brassica napus L.). The allelopathic effect on germination varied and depended on extracted species, extract stage, and response species;whereas the effect on radicle elongation was similar among extracted species, yet unique within response species. This research demonstrated that allelopathy studies should include multiple allelopathic and response species to accurately quantify the magnitude of chemical effects among allelopathic species and to rule out potential phytotoxic chemical defense/detoxification mechanisms that exist in some response species.