期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Late-Season Grass Weed Management with In-Crop and Post-Harvest Herbicides in Twin-Row Glyphosate-Resistant Soybean
1
作者 Krishna N. Reddy charles t. bryson Vijay K. Nandula 《American Journal of Plant Sciences》 2015年第1期213-218,共6页
Emergence of grasses late in the season has become a problem in glyphosate-resistant (GR) soybean production in the southern US. A 3-yr field study was conducted from 2011 to 2013 at Stoneville, MS to determine effica... Emergence of grasses late in the season has become a problem in glyphosate-resistant (GR) soybean production in the southern US. A 3-yr field study was conducted from 2011 to 2013 at Stoneville, MS to determine efficacy of post-harvest and pyroxasulfone-based in-crop herbicides on late-season grasses and yield in twin-row glyphosate-resistant soybean. Experiments were conducted in a split-plot arrangement of treatments in a randomized complete block design with fall herbicides (with and without pendimethalin at 1.12 kg ai ha-1 and paraquatat 0.84 kg ai ha-1) as main plots and in-crop herbicides as subplots with four replications. The six in-crop herbicide programs were: glyphosate applied early postemergence (EPOST) at 0.84 kg·aeha-1 followed by (fb) glyphosate late postemergence (LPOST) at 0.84 kg·ha-1 with and without pyroxasulfone preemergence (PRE) applied at 0.18 kg ai ha-1, pyroxasulfone PRE fb glyphosate at 0.84 kg·ha-1 LPOST or glyphosate at 0.84 kg·ha-1 + S-metolachlor at 1.68 kg ai ha-1 EPOST, pyroxasulfone PRE fb S-meto- lachlor at 1.12 kg·ha-1 + fomesafen at 0.27 kg ai ha-1 EPOST fb clethodim at 0.14 kg ai ha-1, and a no-herbicide control. Browntop millet, Digitaria spp., and junglerice densities at 2 weeks after LPOST, grass weed dry biomass at harvest, and soybean yield were similar regardless of post- harvest herbicides in all three years. At 2 weeks after LPOST, browntop millet, Digitaria spp. and junglerice densities were greatly reduced in all five in-crop herbicide treatments compared with no herbicide plot in all three years. Grass weed dry biomass in no-herbicide plots was 3346, 6136, and 6916 kg·ha-1 in 2011, 2012, and 2013, respectively and the five herbicide treatments reduced grass weed dry biomass by at least 87%, 84%, and 99% in 2011, 2012, and 2013, respectively. Soybean yield was higher with all five in-crop herbicide treatments compared to no herbicide control in all three years. These results indicate that browntop millet, Digitaria spp., and junglerice infestations can be reduced with pyroxasulfone-based in-crop herbicide programs in twin-row GR soybean. 展开更多
关键词 Browntop MILLET Digitaria spp. Junglerice S-METOLACHLOR Pyroxasulfone Soybean Twin-Row
下载PDF
Variation in 5-Enolpyruvylshikimate-3-Phosphate Synthase (EPSPS) Coding Sequences and Glyphosate Response among <i>Cyperus rotundus</i>L. Populations
2
作者 William t. Molin charles t. bryson 《American Journal of Plant Sciences》 2019年第12期2366-2381,共16页
The gene sequence encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), the enzymatic target site of the herbicide glyphosate, was determined for several purple nutsedge (Cyperus rotundus L.) accessions from g... The gene sequence encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), the enzymatic target site of the herbicide glyphosate, was determined for several purple nutsedge (Cyperus rotundus L.) accessions from geographically distant locations and these were aligned to generate a consensus sequence. The EPSPS sequences each had single nucleotide polymorphisms (SNPs) only a few of which were predicted to cause an amino acid change in the EPSP synthase. None had the proline to serine substitution or other substitutions responsible for glyphosate resistance reported in other species. A dendrogram generated from the cluster analysis of the EPSPS gene sequences indicated similarities between accessions from Tanzania, Indonesia, California-2, Greece, Brazil, Argentina and Iran much like cluster analysis previously reported based on RAPD scores and morphological traits possibly indicating a common genetic background or origin. Considering the differences in EPSPS sequences, the response of these purple nutsedge accessions to 0.84 kg·ae·ha-1 of glyphosate was assessed to determine whether differential tolerance was present. At 7 days after the first application control ranged from 9% for the accession from Greece to 73% for the accession from Tanzania. Control of these accessions increased to 45% and 93% respectively by 14 days after the second application. The I50’s for glyphosate inhibition of growth for four accessions from geographically distant countries (Mississippi, Brazil, Indonesia and Tanzania) were 0.21, 0.10, 0.25 and 0.06 kg·ha-1, respectively, which represented a 4-fold difference. The difference in sensitivity to glyphosate may be a result of a non-target site mechanism such as differences in sequestration, translocation or cuticle thickness rather than alterations in EPSPS. 展开更多
关键词 PURPLE Nutsedge GLYPHOSATE Tolerance Genetic Diversity 5-Enolpyruvylshikimate-3-Phosphate
下载PDF
Genetic Diversity among Geographically Separated <i>Cyperus rotundus</i>Accessions Based on RAPD Markers and Morphological Characteristics
3
作者 William t. Molin Richard R. Kronfol +2 位作者 Jeffery D. Ray Brian E. Scheffler charles t. bryson 《American Journal of Plant Sciences》 2019年第11期2034-2046,共13页
The diversity of globally distributed populations of purple nutsedge was assessed using molecular marker data and morphological traits. Cluster analysis of binary random amplified polymorphic DNA (RAPD) data and morph... The diversity of globally distributed populations of purple nutsedge was assessed using molecular marker data and morphological traits. Cluster analysis of binary random amplified polymorphic DNA (RAPD) data and morphological traits indicated that the global population of purple nutsedge consisted of two clades. Cluster analysis of the RAPD data supported separation of the purple nutsedge accessions evaluated into two distinct clades of 11 and 33 accessions. Except for accessions identified as California* and Arizona, all USA accessions were clustered with accessions from Taiwan, Western Samoa, New Zealand, Malaysia, Japan, El Salvador, Columbia, Australia, Thailand and West Indies. A second cluster included accessions from Sudan, Greece, Iran, California*, Arizona, Brazil, Argentina, Mauritius, Philippines, Indonesia and Tanzania. The accessions from Sudan, Greece, Iran, Mauritius, and Tanzania were distributed along a similar longitudinal axis. Cluster analysis based on morphological traits though not identical to that based on RAPD data also supported separation into two clades and perhaps a third. The lack of genetic diversity among accessions supported the hypothesis that spread and propagation into new environments were largely by tubers which preserved genetic identity. The lack of diversity particularly among New World and USA accessions may also reflect a relatively recent introduction of the species into the Americas and a low level of outcrossing. 展开更多
关键词 PURPLE Nutsedge RAPDS Genetic Diversity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部