Accurate soil moisture content measurements are vital to precision irrigation management. Remote sensing using the microwave spectrum (such as GPS signals) has been used for measuring large area soil moisture contents...Accurate soil moisture content measurements are vital to precision irrigation management. Remote sensing using the microwave spectrum (such as GPS signals) has been used for measuring large area soil moisture contents. In our previous work, we estimated surface soil moisture contents for bare soil using a GPS Delay Mapping Receiver (DMR) developed by NASA. However, the effect of vegetation was not considered in these studies. Hence the objectives of this study were to: 1) investigate the feasibility of using DMR to determine soil moisture content in cotton production fields;2) evaluate the attenuation effect of vegetation (cotton) on reflected GPS signal. Field experiments were conducted during the 2013 and 2014 growing seasons in South Carolina. GPS antennas were mounted at three heights (1.6, 2.7, and 4.2 m) over cotton fields to measure reflected GPS signals (DMR readings). DMR readings, soil core samples, and plant measurements were collected about once a week and attenuation effect of plant canopy was calculated. Results showed that DMR was able to detect soil moisture changes within one week after precipitation events that were larger than 25 mm per day. However, the DMR readings were poorly correlated with soil volumetric water content during dry periods. Attenuation effect of plant canopy was not significant. For irrigation purpose, the results suggested that the sensitivity of reflected GPS signals to soil moisture changes needed to be further studied before this technology could be utilized for irrigation scheduling in cotton production. Refinement of this technology will expand the use of advanced remote sensing technology for site-specific and timely irrigation scheduling. This would eliminate the need to install moisture sensors in production fields, which can interfere with farming operations and increase production costs.展开更多
The conventional best management practice of sediment basins may create a reservoir for pathogenic bacteria. The fine particles that enter these basins have been shown to provide protection for bacteria;the small pore...The conventional best management practice of sediment basins may create a reservoir for pathogenic bacteria. The fine particles that enter these basins have been shown to provide protection for bacteria;the small pores of clays and silts minimize predators and block sunlight. Therefore, while these basins decrease sediment loadings to water bodies downstream, they may introduce harmful levels of pathogenic bacteria into surface waters. In addition to causing human health risks, high bacteria levels alter natural biological makeup of downstream ecosystems. This paper describes the attachment of Escherichia coli to various particle sizes in construction site sediment basins. Five sediment basins, located in Anderson, South Carolina were sampled after rain events to explore trends that exist between various particle sizes and E. coli densities. Results provide evidence to suggest that sediment basins are a reservoir for pathogenic bacteria. Data showed that most E. coli attached to smaller particles with diameters less than 0.004 mm. These particles do not settle out of the water column quickly and are often passed through the basin during intense storms. Consequently, high levels of bacteria are passed to downstream waters. This research provides considerable evidence that the clays and silts within man-made construction basins can cause detrimental effects to South Carolina surface waters. With this knowledge, better stormwater management practices may be developed with the goal of remediating impaired surface waters of South Carolina.展开更多
文摘Accurate soil moisture content measurements are vital to precision irrigation management. Remote sensing using the microwave spectrum (such as GPS signals) has been used for measuring large area soil moisture contents. In our previous work, we estimated surface soil moisture contents for bare soil using a GPS Delay Mapping Receiver (DMR) developed by NASA. However, the effect of vegetation was not considered in these studies. Hence the objectives of this study were to: 1) investigate the feasibility of using DMR to determine soil moisture content in cotton production fields;2) evaluate the attenuation effect of vegetation (cotton) on reflected GPS signal. Field experiments were conducted during the 2013 and 2014 growing seasons in South Carolina. GPS antennas were mounted at three heights (1.6, 2.7, and 4.2 m) over cotton fields to measure reflected GPS signals (DMR readings). DMR readings, soil core samples, and plant measurements were collected about once a week and attenuation effect of plant canopy was calculated. Results showed that DMR was able to detect soil moisture changes within one week after precipitation events that were larger than 25 mm per day. However, the DMR readings were poorly correlated with soil volumetric water content during dry periods. Attenuation effect of plant canopy was not significant. For irrigation purpose, the results suggested that the sensitivity of reflected GPS signals to soil moisture changes needed to be further studied before this technology could be utilized for irrigation scheduling in cotton production. Refinement of this technology will expand the use of advanced remote sensing technology for site-specific and timely irrigation scheduling. This would eliminate the need to install moisture sensors in production fields, which can interfere with farming operations and increase production costs.
文摘The conventional best management practice of sediment basins may create a reservoir for pathogenic bacteria. The fine particles that enter these basins have been shown to provide protection for bacteria;the small pores of clays and silts minimize predators and block sunlight. Therefore, while these basins decrease sediment loadings to water bodies downstream, they may introduce harmful levels of pathogenic bacteria into surface waters. In addition to causing human health risks, high bacteria levels alter natural biological makeup of downstream ecosystems. This paper describes the attachment of Escherichia coli to various particle sizes in construction site sediment basins. Five sediment basins, located in Anderson, South Carolina were sampled after rain events to explore trends that exist between various particle sizes and E. coli densities. Results provide evidence to suggest that sediment basins are a reservoir for pathogenic bacteria. Data showed that most E. coli attached to smaller particles with diameters less than 0.004 mm. These particles do not settle out of the water column quickly and are often passed through the basin during intense storms. Consequently, high levels of bacteria are passed to downstream waters. This research provides considerable evidence that the clays and silts within man-made construction basins can cause detrimental effects to South Carolina surface waters. With this knowledge, better stormwater management practices may be developed with the goal of remediating impaired surface waters of South Carolina.