Bulk Czochralski silicon crystals were decorated with Cu and characterized by transmission electron microscopy (TEM) with energy-dispersive spectroscopy (EDS), atomic force microscopy (AFM), optical microscopy (OM), s...Bulk Czochralski silicon crystals were decorated with Cu and characterized by transmission electron microscopy (TEM) with energy-dispersive spectroscopy (EDS), atomic force microscopy (AFM), optical microscopy (OM), scanning electron microscopy (SEM), and photoluminescence spectroscopy (PL). The vacancy-type core, oxidation-induced stacking faults (OISF) ring, nearly defect-free ring, and self-interstitial-type rich outer ring were delineated in the Si crystal wafer. At the surface of the Si crystal, vertical-horizontal line (V-H line) defects and windmill defects (W-defects) were formed instead of OISF. The families of growth planes and directions were expressed as {011} and for the V-H line and {010} and for W-defects, respectively. In addition to V-H line defects and W-defects, pits or voids and Si oxide with dissolved Cu were found in the Si crystal wafer.展开更多
文摘Bulk Czochralski silicon crystals were decorated with Cu and characterized by transmission electron microscopy (TEM) with energy-dispersive spectroscopy (EDS), atomic force microscopy (AFM), optical microscopy (OM), scanning electron microscopy (SEM), and photoluminescence spectroscopy (PL). The vacancy-type core, oxidation-induced stacking faults (OISF) ring, nearly defect-free ring, and self-interstitial-type rich outer ring were delineated in the Si crystal wafer. At the surface of the Si crystal, vertical-horizontal line (V-H line) defects and windmill defects (W-defects) were formed instead of OISF. The families of growth planes and directions were expressed as {011} and for the V-H line and {010} and for W-defects, respectively. In addition to V-H line defects and W-defects, pits or voids and Si oxide with dissolved Cu were found in the Si crystal wafer.