We report an overlapping sampling scheme to accelerate computational ghost imaging for imaging moving targets,based on reordering a set of Hadamard modulation matrices by means of a heuristic algorithm. The new conden...We report an overlapping sampling scheme to accelerate computational ghost imaging for imaging moving targets,based on reordering a set of Hadamard modulation matrices by means of a heuristic algorithm. The new condensed overlapped matrices are then designed to shorten and optimize encoding of the overlapped patterns, which are shown to be much superior to the random matrices. In addition, we apply deep learning to image the target, and use the signal acquired by the bucket detector and corresponding real image to train the neural network. Detailed comparisons show that our new method can improve the imaging speed by as much as an order of magnitude, and improve the image quality as well.展开更多
基金supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0403301, 2017YFB0503301, and2018YFB0504302)the National Natural Science Foundation of China (Grant Nos. 11991073, 61975229, and Y8JC011L51)+2 种基金the Key Program of CAS (Grant No. XDB17030500)the Civil Space Project (Grant No. D040301)the Science Challenge Project (Grant No. TZ2018005)。
文摘We report an overlapping sampling scheme to accelerate computational ghost imaging for imaging moving targets,based on reordering a set of Hadamard modulation matrices by means of a heuristic algorithm. The new condensed overlapped matrices are then designed to shorten and optimize encoding of the overlapped patterns, which are shown to be much superior to the random matrices. In addition, we apply deep learning to image the target, and use the signal acquired by the bucket detector and corresponding real image to train the neural network. Detailed comparisons show that our new method can improve the imaging speed by as much as an order of magnitude, and improve the image quality as well.