Natural geological structures in rock(e.g.,joints,weakness planes,defects)play a vital role in the stability of tunnels and underground operations during construction.We investigated the failure characteristics of a d...Natural geological structures in rock(e.g.,joints,weakness planes,defects)play a vital role in the stability of tunnels and underground operations during construction.We investigated the failure characteristics of a deep circular tunnel in a rock mass with multiple weakness planes using a 2D combined finite element method/discrete element method(FEM/DEM).Conventional triaxial compression tests were performed on typical hard rock(marble)specimens under a range of confinement stress conditions to validate the rationale and accuracy of the proposed numerical approach.Parametric analysis was subsequently conducted to investigate the influence of inclination angle,and length on the crack propagation behavior,failure mode,energy evolution,and displacement distribution of the surrounding rock.The results show that the inclination angle strongly affects tunnel stability,and the failure intensity and damage range increase with increasing inclination angle and then decrease.The dynamic disasters are more likely with increasing weak plane length.Shearing and sliding along multiple weak planes are also consistently accompanied by kinetic energy fluctuations and surges after unloading,which implies a potentially violent dynamic response around a deeply-buried tunnel.Interactions between slabbing and shearing near the excavation boundaries are also discussed.The results presented here provide important insight into deep tunnel failure in hard rock influenced by both unloading disturbance and tectonic activation.展开更多
Acoustic Emission(AE)waveforms contain information on microscopic structural features that can be related with damage of coal rock masses.In this paper,the Hilbert-Huang transform(HHT)method is used to obtain detailed...Acoustic Emission(AE)waveforms contain information on microscopic structural features that can be related with damage of coal rock masses.In this paper,the Hilbert-Huang transform(HHT)method is used to obtain detailed structural characteristics of coal rock masses associated with damage,at different loading stages,from the analyses of the characteristics of AE waveforms.The results show that the HHT method can be used to decompose the target waveform into multiple intrinsic mode function(IMF)components,with the energy mainly concentrated in the c1−c4 IMF components,where the c1 component has the highest frequency and the largest amount of energy.As the loading continues,the proportion of energy occupied by the low-frequency IMF component shows an increasing trend.In the initial compaction stage,the Hilbert marginal spectrum is mainly concentrated in the low frequency range of 0−40 kHz.The plastic deformation stage is associated to energy accumulation in the frequency range of 0−25 kHz and 200−350 kHz,while the instability damage stage is mainly concentrated in the frequency range of 0−25 kHz.At 20 kHz,the instability damage reaches its maximum value.There is a relatively clear instantaneous energy peak at each stage,albeit being more distinct at the beginning and at the end of the compaction phase.Since the effective duration of the waveform is short,its resulting energy is small,and so there is a relatively high value from the instantaneous energy peak.The waveform lasts a relatively long time after the peak that coincides with failure,which is the period where the waveform reaches its maximum energy level.The Hilbert three-dimensional energy spectrum is generally zero in the region where the real energy is zero.In addition,its energy spectrum is intermittent rather than continuous.It is therefore consistent with the characteristics of the several dynamic ranges mentioned above,and it indicates more clearly the low-frequency energy concentration in the critical stage of instability failure.This study well reflects the response law of geophysical signals in the process of coal rock instability and failure,providing a basis for monitoring coal rock dynamic disasters.展开更多
In this research,a series of biaxial compression and biaxial fatigue tests were conducted to investigate the mechanical behaviors of marble and sandstone under biaxial confinements.Experimental results demonstrate tha...In this research,a series of biaxial compression and biaxial fatigue tests were conducted to investigate the mechanical behaviors of marble and sandstone under biaxial confinements.Experimental results demonstrate that the biaxial compressive strength of rocks under biaxial compression increases firstly,and subsequently decreases with increase of the intermediate principal stress.The fatigue failure characteristics of the rocks in biaxial fatigue tests are functions of the peak value of fatigue loads,the intermediate principal stress and the rock lithology.With the increase of the peak values of fatigue loads,the fatigue lives of rocks decrease.The intermediate principal stress strengthens the resistance ability of rocks to fatigue loads except considering the strength increasing under biaxial confinements.The fatigue lives of rocks increase with the increase of the intermediate principal stress under the same ratio of the fatigue load and their biaxial compressive strength.The acoustic emission(AE)and fragments studies showed that the sandstone has higher ability to resist the fatigue loads compared to the marble,and the marble generated a greater number of smaller fragments after fatigue failure compared to the sandstone.So,it can be inferred that the rock breaking efficiency and rock burst is higher or severer induced by fatigue loading than that induced by monotonous quasi-static loading,especially for hard rocks.展开更多
基金Projects(52004143,51774194)supported by the National Natural Science Foundation of ChinaProject(2020M670781)supported by the China Postdoctoral Science Foundation+2 种基金Project(SKLGDUEK2021)supported by the State Key Laboratory for GeoMechanics and Deep Underground Engineering,ChinaProject(U1806208)supported by the NSFC-Shandong Joint Fund,ChinaProject(2018GSF117023)supported by the Key Research and Development Program of Shandong Province,China。
文摘Natural geological structures in rock(e.g.,joints,weakness planes,defects)play a vital role in the stability of tunnels and underground operations during construction.We investigated the failure characteristics of a deep circular tunnel in a rock mass with multiple weakness planes using a 2D combined finite element method/discrete element method(FEM/DEM).Conventional triaxial compression tests were performed on typical hard rock(marble)specimens under a range of confinement stress conditions to validate the rationale and accuracy of the proposed numerical approach.Parametric analysis was subsequently conducted to investigate the influence of inclination angle,and length on the crack propagation behavior,failure mode,energy evolution,and displacement distribution of the surrounding rock.The results show that the inclination angle strongly affects tunnel stability,and the failure intensity and damage range increase with increasing inclination angle and then decrease.The dynamic disasters are more likely with increasing weak plane length.Shearing and sliding along multiple weak planes are also consistently accompanied by kinetic energy fluctuations and surges after unloading,which implies a potentially violent dynamic response around a deeply-buried tunnel.Interactions between slabbing and shearing near the excavation boundaries are also discussed.The results presented here provide important insight into deep tunnel failure in hard rock influenced by both unloading disturbance and tectonic activation.
基金Projects(51904167, 51474134, 51774194) supported by the National Natural Science Foundation of ChinaProject(SKLCRSM19KF008) supported by the Research Fund of the State Key Laboratory of Coal Resources and Safe Mining,CUMT,China+5 种基金Project(cstc2019jcyj-bsh0041) supported by the Natural Science Foundation of Chongqing,ChinaProject(2011DA105287-BH201903) supported by the Postdoctoral ScienceFunded by State Key Laboratory of Coal Mine Disaster Dynamics and Control,ChinaProject(2019SDZY034-2) supported by the Key R&D plan of Shandong Province,ChinaProject(2020M670781) supported by the China Postdoctoral Science FoundationProject supported by the Taishan Scholars ProjectProject supported by the Taishan Scholar Talent Team Support Plan for Advantaged&Unique Discipline Areas,China
文摘Acoustic Emission(AE)waveforms contain information on microscopic structural features that can be related with damage of coal rock masses.In this paper,the Hilbert-Huang transform(HHT)method is used to obtain detailed structural characteristics of coal rock masses associated with damage,at different loading stages,from the analyses of the characteristics of AE waveforms.The results show that the HHT method can be used to decompose the target waveform into multiple intrinsic mode function(IMF)components,with the energy mainly concentrated in the c1−c4 IMF components,where the c1 component has the highest frequency and the largest amount of energy.As the loading continues,the proportion of energy occupied by the low-frequency IMF component shows an increasing trend.In the initial compaction stage,the Hilbert marginal spectrum is mainly concentrated in the low frequency range of 0−40 kHz.The plastic deformation stage is associated to energy accumulation in the frequency range of 0−25 kHz and 200−350 kHz,while the instability damage stage is mainly concentrated in the frequency range of 0−25 kHz.At 20 kHz,the instability damage reaches its maximum value.There is a relatively clear instantaneous energy peak at each stage,albeit being more distinct at the beginning and at the end of the compaction phase.Since the effective duration of the waveform is short,its resulting energy is small,and so there is a relatively high value from the instantaneous energy peak.The waveform lasts a relatively long time after the peak that coincides with failure,which is the period where the waveform reaches its maximum energy level.The Hilbert three-dimensional energy spectrum is generally zero in the region where the real energy is zero.In addition,its energy spectrum is intermittent rather than continuous.It is therefore consistent with the characteristics of the several dynamic ranges mentioned above,and it indicates more clearly the low-frequency energy concentration in the critical stage of instability failure.This study well reflects the response law of geophysical signals in the process of coal rock instability and failure,providing a basis for monitoring coal rock dynamic disasters.
基金Projects(51774326,41807259)supported by the National Natural Science Foundation of ChinaProject(MDPC201917)supported by Mining Disaster Prevention and Control Ministry Key Laboratory at Shandong University of Science and Technology,China。
文摘In this research,a series of biaxial compression and biaxial fatigue tests were conducted to investigate the mechanical behaviors of marble and sandstone under biaxial confinements.Experimental results demonstrate that the biaxial compressive strength of rocks under biaxial compression increases firstly,and subsequently decreases with increase of the intermediate principal stress.The fatigue failure characteristics of the rocks in biaxial fatigue tests are functions of the peak value of fatigue loads,the intermediate principal stress and the rock lithology.With the increase of the peak values of fatigue loads,the fatigue lives of rocks decrease.The intermediate principal stress strengthens the resistance ability of rocks to fatigue loads except considering the strength increasing under biaxial confinements.The fatigue lives of rocks increase with the increase of the intermediate principal stress under the same ratio of the fatigue load and their biaxial compressive strength.The acoustic emission(AE)and fragments studies showed that the sandstone has higher ability to resist the fatigue loads compared to the marble,and the marble generated a greater number of smaller fragments after fatigue failure compared to the sandstone.So,it can be inferred that the rock breaking efficiency and rock burst is higher or severer induced by fatigue loading than that induced by monotonous quasi-static loading,especially for hard rocks.