It is my great pleasure to participate in this event, which celebrates the 30th anniversary of KOSEF and is of great significance to the international community of funding institutions.
以大豆分离蛋白(soy protein isolate, SPI)为原料,制备不同pH值荷载儿茶素的蛋白复合物,利用差示扫描量热法、紫外可见光谱、荧光光谱、圆二色光谱等技术探究儿茶素和SPI相互作用机理,解析蛋白复合物热稳定性、荧光淬灭类型、结合位点...以大豆分离蛋白(soy protein isolate, SPI)为原料,制备不同pH值荷载儿茶素的蛋白复合物,利用差示扫描量热法、紫外可见光谱、荧光光谱、圆二色光谱等技术探究儿茶素和SPI相互作用机理,解析蛋白复合物热稳定性、荧光淬灭类型、结合位点数、热力学参数和二级结构含量等信息,分析儿茶素和SPI间结合亲和力以及复合物的乳化性。结果表明:不同pH值处理的儿茶素对SPI荧光淬灭方式均为静态淬灭,当pH值为3.5、5.5、6.5时,二者间相互作用力主要为静电作用力,pH值为4.5时主要为氢键和范德华力,pH值为7.0、7.5、8.5、9.5时主要为疏水相互作用。随着pH值增加,复合物的热稳定性逐渐增加,且在pH值为9.5时,SPI变性温度升高至157.09℃。当pH值为7.5时,复合物乳化活性和乳化稳定性比相同pH值下对照组(SPI组)分别显著提高7.70%和13.44%(P<0.05)。不同pH值处理会改变儿茶素-SPI复合物的结构,通过调控pH值可制备具有良好乳化性的大豆蛋白食品基料。展开更多
文摘It is my great pleasure to participate in this event, which celebrates the 30th anniversary of KOSEF and is of great significance to the international community of funding institutions.
文摘以大豆分离蛋白(soy protein isolate, SPI)为原料,制备不同pH值荷载儿茶素的蛋白复合物,利用差示扫描量热法、紫外可见光谱、荧光光谱、圆二色光谱等技术探究儿茶素和SPI相互作用机理,解析蛋白复合物热稳定性、荧光淬灭类型、结合位点数、热力学参数和二级结构含量等信息,分析儿茶素和SPI间结合亲和力以及复合物的乳化性。结果表明:不同pH值处理的儿茶素对SPI荧光淬灭方式均为静态淬灭,当pH值为3.5、5.5、6.5时,二者间相互作用力主要为静电作用力,pH值为4.5时主要为氢键和范德华力,pH值为7.0、7.5、8.5、9.5时主要为疏水相互作用。随着pH值增加,复合物的热稳定性逐渐增加,且在pH值为9.5时,SPI变性温度升高至157.09℃。当pH值为7.5时,复合物乳化活性和乳化稳定性比相同pH值下对照组(SPI组)分别显著提高7.70%和13.44%(P<0.05)。不同pH值处理会改变儿茶素-SPI复合物的结构,通过调控pH值可制备具有良好乳化性的大豆蛋白食品基料。