A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a ...A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.展开更多
Coordinated mission decision-making is one of the core steps to effectively exploit the capabilities of cooperative attack of multiple aircrafts. However, the situational assessment is an essential base to realize the...Coordinated mission decision-making is one of the core steps to effectively exploit the capabilities of cooperative attack of multiple aircrafts. However, the situational assessment is an essential base to realize the mission decision-making. Therefore, in this paper, we develop a mission decision-making method of multi-aircraft cooperatively attacking multi-target based on situational assessment. We have studied the situational assessment mathematical model based on the Dempster-Shafer(D-S) evidence theory and the mission decision-making mathematical model based on the game theory. The proposed mission decision-making method of antagonized airfight is validated by some simulation examples of a swarm of unmanned combat aerial vehicles(UCAVs)that carry out the mission of the suppressing of enemy air defenses(SEAD).展开更多
基金This project was supported by the National Natural Science Foundation of China (90405011).
文摘A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.
基金supported by the Aeronautical Science Foundation of China (No. 05D01002)
文摘Coordinated mission decision-making is one of the core steps to effectively exploit the capabilities of cooperative attack of multiple aircrafts. However, the situational assessment is an essential base to realize the mission decision-making. Therefore, in this paper, we develop a mission decision-making method of multi-aircraft cooperatively attacking multi-target based on situational assessment. We have studied the situational assessment mathematical model based on the Dempster-Shafer(D-S) evidence theory and the mission decision-making mathematical model based on the game theory. The proposed mission decision-making method of antagonized airfight is validated by some simulation examples of a swarm of unmanned combat aerial vehicles(UCAVs)that carry out the mission of the suppressing of enemy air defenses(SEAD).