Highly branched poiy(β-amino ester)s(HPAEs)have emerged as one type of the most viable non-viral gene delivery vectors,both in vitro and in viva.However,the effects of different branching strategies on the gene trans...Highly branched poiy(β-amino ester)s(HPAEs)have emerged as one type of the most viable non-viral gene delivery vectors,both in vitro and in viva.However,the effects of different branching strategies on the gene transfection performance have not yet been explored.Here,using triacrylate(B3)and diamine(B4)as the branching monomers,a series of HPAEs were synthesized via the"A2+B3+C2"and"A2+B4+C2"strategies,respectively.Results show that the branching strategy plays a pivotal role in dictating the physiological properties of the HPAE/DNA polyplexes and thus leads to obviously different cell viability and transfection efficiency.Comparatively,HPAEs synthesized via the"A2+B3+C2"branching strategy are more favorable for DNA transfection than that synthesized via the"A2+B4+C2"strategy.This study may provide new insights into the development of HPAEs based non-viral DNA delivery system.展开更多
基金This work was financially supported by Science Foundation Ireland(SFI)Principal Investigator Program(No.13/IA/1962)the National Natural Science Foundation of China(Nos.51873179,51903202),and University College Dublin。
文摘Highly branched poiy(β-amino ester)s(HPAEs)have emerged as one type of the most viable non-viral gene delivery vectors,both in vitro and in viva.However,the effects of different branching strategies on the gene transfection performance have not yet been explored.Here,using triacrylate(B3)and diamine(B4)as the branching monomers,a series of HPAEs were synthesized via the"A2+B3+C2"and"A2+B4+C2"strategies,respectively.Results show that the branching strategy plays a pivotal role in dictating the physiological properties of the HPAE/DNA polyplexes and thus leads to obviously different cell viability and transfection efficiency.Comparatively,HPAEs synthesized via the"A2+B3+C2"branching strategy are more favorable for DNA transfection than that synthesized via the"A2+B4+C2"strategy.This study may provide new insights into the development of HPAEs based non-viral DNA delivery system.