Abstract The overall crystallization kinetics and spherulite morphologies of miscible poly(ethylene oxide) (PEO)/1-butyl-3- methylimidazolium hexafluorophosphate ([BMIM][PF6]) mixtures were studied by differenti...Abstract The overall crystallization kinetics and spherulite morphologies of miscible poly(ethylene oxide) (PEO)/1-butyl-3- methylimidazolium hexafluorophosphate ([BMIM][PF6]) mixtures were studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM) and rheological measurements. The finer crystal structures were further detected by wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS). Crystallization of PEO is largely suppressed by [BMIM][PF6] addition especially at higher ionic liquid (IL) concentrations above 20 wt%. Both the overall crystallization rate and the spherulite growth decrease with the increase of IL content and crystallization temperature; however, the crystallization mechanism keeps unchanged as evidenced by the similar Avrami exponent n and WAXD results. The addition of [BMIM][PF6] could induce more nuclei to some extent, but the induction time of crystallization is evidently prolonged, and a linear to non-linear transition of the spherulite growth (R ∝ t to R ∝t^1/2) can be observed. At higher IL concentration, the spherulite texture changes apparently from particular serrated to branch surface due to the diffusion-controlled growth and the dilution effect, which also as a main factor contributes to the increasing trend of the long period of crystals.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51573115 and 51421061)
文摘Abstract The overall crystallization kinetics and spherulite morphologies of miscible poly(ethylene oxide) (PEO)/1-butyl-3- methylimidazolium hexafluorophosphate ([BMIM][PF6]) mixtures were studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM) and rheological measurements. The finer crystal structures were further detected by wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS). Crystallization of PEO is largely suppressed by [BMIM][PF6] addition especially at higher ionic liquid (IL) concentrations above 20 wt%. Both the overall crystallization rate and the spherulite growth decrease with the increase of IL content and crystallization temperature; however, the crystallization mechanism keeps unchanged as evidenced by the similar Avrami exponent n and WAXD results. The addition of [BMIM][PF6] could induce more nuclei to some extent, but the induction time of crystallization is evidently prolonged, and a linear to non-linear transition of the spherulite growth (R ∝ t to R ∝t^1/2) can be observed. At higher IL concentration, the spherulite texture changes apparently from particular serrated to branch surface due to the diffusion-controlled growth and the dilution effect, which also as a main factor contributes to the increasing trend of the long period of crystals.