We studied the characteristics of two-scale pore structure of preform in the deposition process and the mass transfer of reactant gas in dual-scale pores, and observed the physiochemical phenomenon associated with the...We studied the characteristics of two-scale pore structure of preform in the deposition process and the mass transfer of reactant gas in dual-scale pores, and observed the physiochemical phenomenon associated with the reaction. Thereby, we established mathematical models on two scales, respectively, preform and reactor. These models were used for the numerical simulation of the process of ceramic matrix composites densified by isothermal chemical vapor infiltration(ICVI). The models were used to carry out a systematic study on the influence of process conditions and the preform structure on the densification behaviors. The most important findings of our study are that the processing time could be reduced by about 50% without compromising the quality of the material, if the processing temperature is 950-1 000 ℃ for the first 70 hours and then raised to 1 100 ℃.展开更多
An adhesive of the SiBCN ceramic was synthesized through the polymer derived ceramics(PDC)route.Meanwhile with higher adhesion strength and simpler process condition,the polyborosilazane(PSNB)was modified by E-44 epox...An adhesive of the SiBCN ceramic was synthesized through the polymer derived ceramics(PDC)route.Meanwhile with higher adhesion strength and simpler process condition,the polyborosilazane(PSNB)was modified by E-44 epoxy resin.The E-44 epoxy resin was used to promote the oxidation process of SiBCN,in other words,to produce more amount of SiO2-B2O3 glasses.The phase composition,elemental analysis,chemical bonds and microstructure were investigated by using X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),and scanning electron microscope(SEM)measurements.The E-44 modified adhesives were cured at 120℃in air for 2 h,and were pyrolyzed at 1200,1400,and 1500℃for 2 h in air,respectively.The highest adhesion strength of the modified adhesive was up to 5.33,12.23,and 12.50 MPa after being heat treated at 1200,1400,and 1500℃,respectively.Finally,we proposed an adhesion model and revealed the adhesion mechanism of SiBCN ceramic.展开更多
Nanoparticles and microparticles reinforced Al matrix composites were fabricated by spark plasma sintering, and the microstructure and tribological properties were investigated systemically. The nano-Al2O3 particle an...Nanoparticles and microparticles reinforced Al matrix composites were fabricated by spark plasma sintering, and the microstructure and tribological properties were investigated systemically. The nano-Al2O3 particle and micro-Al2O3 particle uniformly dispersed in Al matrix composites. The introduction of nanoparticles is beneficial to the decrease of friction coefficient and wear rate, while microparticles are responsible to the high friction coefficient, resulting in the abrasive wear. With the introduction of both nanoparticles and microparticles, their synergic effect will lead to the variation of tribological behavior.展开更多
Multi-walled carbon nanotubes(MWNTs) were incorporated into precursor-derived ceramics made from a polysilazane.A ceramic nanocomposite reinforced with about 35 vol%of carbon nanotubes(CNTs)was fabricated by infil...Multi-walled carbon nanotubes(MWNTs) were incorporated into precursor-derived ceramics made from a polysilazane.A ceramic nanocomposite reinforced with about 35 vol%of carbon nanotubes(CNTs)was fabricated by infiltrating CNT-preform with liquid-phased polymeric precursor followed by pyrolysis.The nanocomposite has a dense structure without micro-cracks.The results reveal that the nanocomposite has lower indentation hardness but higher fracture energy than non-reinforced ceramic from the microindentation tests results.The effect of the CNTs on the mechanical properties of the nanocomposite should be discussed accordingly.展开更多
As potential wave-transparent materials applied at high temperatures, 3D BNf/Si3N4 ceramic matrix composites were prepared by low pressure chemical vapor infiltration or deposition(LPCVI/CVD) process from SiCl4-NH3-...As potential wave-transparent materials applied at high temperatures, 3D BNf/Si3N4 ceramic matrix composites were prepared by low pressure chemical vapor infiltration or deposition(LPCVI/CVD) process from SiCl4-NH3-H2-Ar gas precursor at 800 oC. The densification process, microstructure and dielectric properties of 3D BNf/Si3N4 composites were investigated. The results indicated that 3D BNf/Si3N4 was successfully fabricated by LPCVI/CVD, with final open porosity of 2.37% and density of 1.89 g/cm3. Densification kinetics of 3D BNf/Si3N4 is a typical exponential pattern. The Si3N4 matrix was uniformly infiltrated into porous BNf preform. The deposited Si3N4 matrix was amorphous by XRD analysis. Introduction of BN fiber into Si3N4 ceramic lowered the permittivity of Si3N4. The fabricated BNf/Si3N4 composites possess low permittivity of 3.68 and low dielectric loss of lower than 0.01, which are independent of temperature below400 oC. Transmission coefficient of BNf/Si3N4 composite is 0.57 and keeps stable below 400 oC. BNf/Si3N4 can be fabricated at low temperature and may be candidates for the microwave transparent materials.展开更多
A multi-layer coating for carbon-carbon composites with a Si-W outer layer,a SiC barrier layer and a SiC transition layer is prepared by the combination of siliconiza-tion, CVD and liquid reaction method. The effect o...A multi-layer coating for carbon-carbon composites with a Si-W outer layer,a SiC barrier layer and a SiC transition layer is prepared by the combination of siliconiza-tion, CVD and liquid reaction method. The effect of temperature on the oxidation protec-tion life from 1600 to 17OOC is investigated. The thickness of the oxide film on thecoating surface is measured through SEM and EMPA. A concept of critical oxide filmthickness and a critical oxidation protection time is put forward, and, based on it, the re-lation of the critical time with temperature is analyzed. The re8ults show that the relationof the critical oxidation protection time with temperature found by the experiments is fullyidentical with that calcu1ated based on the critical thickness- The physical significance andthe effect factors of the critical oxide film thickness are discussed.展开更多
The thermodynamic phase stability area diagrams of BCl3-NH3-Si Cl4-H2-Ar system were plotted via Factsage software to predict the kinetic experimental results. The effects of parameters(i e, partial pressure of reacta...The thermodynamic phase stability area diagrams of BCl3-NH3-Si Cl4-H2-Ar system were plotted via Factsage software to predict the kinetic experimental results. The effects of parameters(i e, partial pressure of reactants, deposition temperature and total pressure) on the distribution regions of solid phase products were analyzed based on the diagrams. The results show that:(a) Solid phase products are mainly affected by deposition temperature. The area of BN+Si3N4 phase increases with the temperature rising from 650 to 900 ℃, and decreases with the temperature rising from 900 to 1 200 ℃;(b) When temperature and total pressure are constants, BN+Si3N4 phase exists at a high partial pressure of NH3;(c) The effect of total system pressure is correlated to deposition temperature. The temperature ranging from 700 to 900 ℃ under low total pressure is the optimum condition for the deposition.(d) Appropriate kinetic parameters can be determined based on the results of thermodynamic calculation. Si–B–N coating is obtained via low pressure chemical vapor deposition. The analysis by X-ray photoelectron spectroscopy indicates that B–N and Si–N are the main chemical bonds of the coating.展开更多
Through finite element numerical simulation and based on laminated plate theory, the effect of dimension on the torsion properties of uniform C/SiC composites pipe was studied to provide a theoretical guidance for pre...Through finite element numerical simulation and based on laminated plate theory, the effect of dimension on the torsion properties of uniform C/SiC composites pipe was studied to provide a theoretical guidance for preparing the C/SiC pipe with different dimensions. The results show that, with increasing length of pipe, the anti-torsion section coefficient of pipe increases whereas the torsion angle per unit length decreases. Increasing the length can improve the torsion property. Anti-torsion section coefficient rises with increasing internal radius, while the torsion angle per unit length decreases to a constant. With increasing thickness, the anti-torsion section coefficient increases whereas the amplitude decreases gradually, and the torsion angle per unit length is a constant. Increment of internal radius and thickness improves the torsion property finitely.展开更多
基金Funded by the National Natural Science Foundation of China(No.51472092)
文摘We studied the characteristics of two-scale pore structure of preform in the deposition process and the mass transfer of reactant gas in dual-scale pores, and observed the physiochemical phenomenon associated with the reaction. Thereby, we established mathematical models on two scales, respectively, preform and reactor. These models were used for the numerical simulation of the process of ceramic matrix composites densified by isothermal chemical vapor infiltration(ICVI). The models were used to carry out a systematic study on the influence of process conditions and the preform structure on the densification behaviors. The most important findings of our study are that the processing time could be reduced by about 50% without compromising the quality of the material, if the processing temperature is 950-1 000 ℃ for the first 70 hours and then raised to 1 100 ℃.
基金Funded by the Research Fund of the National Key Research and Development Program of China(No.2017YFB0703200)the State Key Laboratory of Solidification Processing(NWPU),China(No.135-QP-2015)the Fundamental Research Funds for the Central Universities(No.3102017zy058).
文摘An adhesive of the SiBCN ceramic was synthesized through the polymer derived ceramics(PDC)route.Meanwhile with higher adhesion strength and simpler process condition,the polyborosilazane(PSNB)was modified by E-44 epoxy resin.The E-44 epoxy resin was used to promote the oxidation process of SiBCN,in other words,to produce more amount of SiO2-B2O3 glasses.The phase composition,elemental analysis,chemical bonds and microstructure were investigated by using X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),and scanning electron microscope(SEM)measurements.The E-44 modified adhesives were cured at 120℃in air for 2 h,and were pyrolyzed at 1200,1400,and 1500℃for 2 h in air,respectively.The highest adhesion strength of the modified adhesive was up to 5.33,12.23,and 12.50 MPa after being heat treated at 1200,1400,and 1500℃,respectively.Finally,we proposed an adhesion model and revealed the adhesion mechanism of SiBCN ceramic.
基金Funded by the National Key R&D Program of China(No.2017YFB1103500)National Science and Technology Major Project(No.2017-VI-0007-0077)the National Natural Science Foundation of China(Nos.51632007,51672218)
文摘Nanoparticles and microparticles reinforced Al matrix composites were fabricated by spark plasma sintering, and the microstructure and tribological properties were investigated systemically. The nano-Al2O3 particle and micro-Al2O3 particle uniformly dispersed in Al matrix composites. The introduction of nanoparticles is beneficial to the decrease of friction coefficient and wear rate, while microparticles are responsible to the high friction coefficient, resulting in the abrasive wear. With the introduction of both nanoparticles and microparticles, their synergic effect will lead to the variation of tribological behavior.
文摘Multi-walled carbon nanotubes(MWNTs) were incorporated into precursor-derived ceramics made from a polysilazane.A ceramic nanocomposite reinforced with about 35 vol%of carbon nanotubes(CNTs)was fabricated by infiltrating CNT-preform with liquid-phased polymeric precursor followed by pyrolysis.The nanocomposite has a dense structure without micro-cracks.The results reveal that the nanocomposite has lower indentation hardness but higher fracture energy than non-reinforced ceramic from the microindentation tests results.The effect of the CNTs on the mechanical properties of the nanocomposite should be discussed accordingly.
基金Funded by the National Natural Science Foundation of China(Nos.51472201,51602258,and 51632007)
文摘As potential wave-transparent materials applied at high temperatures, 3D BNf/Si3N4 ceramic matrix composites were prepared by low pressure chemical vapor infiltration or deposition(LPCVI/CVD) process from SiCl4-NH3-H2-Ar gas precursor at 800 oC. The densification process, microstructure and dielectric properties of 3D BNf/Si3N4 composites were investigated. The results indicated that 3D BNf/Si3N4 was successfully fabricated by LPCVI/CVD, with final open porosity of 2.37% and density of 1.89 g/cm3. Densification kinetics of 3D BNf/Si3N4 is a typical exponential pattern. The Si3N4 matrix was uniformly infiltrated into porous BNf preform. The deposited Si3N4 matrix was amorphous by XRD analysis. Introduction of BN fiber into Si3N4 ceramic lowered the permittivity of Si3N4. The fabricated BNf/Si3N4 composites possess low permittivity of 3.68 and low dielectric loss of lower than 0.01, which are independent of temperature below400 oC. Transmission coefficient of BNf/Si3N4 composite is 0.57 and keeps stable below 400 oC. BNf/Si3N4 can be fabricated at low temperature and may be candidates for the microwave transparent materials.
文摘A multi-layer coating for carbon-carbon composites with a Si-W outer layer,a SiC barrier layer and a SiC transition layer is prepared by the combination of siliconiza-tion, CVD and liquid reaction method. The effect of temperature on the oxidation protec-tion life from 1600 to 17OOC is investigated. The thickness of the oxide film on thecoating surface is measured through SEM and EMPA. A concept of critical oxide filmthickness and a critical oxidation protection time is put forward, and, based on it, the re-lation of the critical time with temperature is analyzed. The re8ults show that the relationof the critical oxidation protection time with temperature found by the experiments is fullyidentical with that calcu1ated based on the critical thickness- The physical significance andthe effect factors of the critical oxide film thickness are discussed.
基金Funded by the National Natural Science Foundation of China(Nos.51002120,51472201)
文摘The thermodynamic phase stability area diagrams of BCl3-NH3-Si Cl4-H2-Ar system were plotted via Factsage software to predict the kinetic experimental results. The effects of parameters(i e, partial pressure of reactants, deposition temperature and total pressure) on the distribution regions of solid phase products were analyzed based on the diagrams. The results show that:(a) Solid phase products are mainly affected by deposition temperature. The area of BN+Si3N4 phase increases with the temperature rising from 650 to 900 ℃, and decreases with the temperature rising from 900 to 1 200 ℃;(b) When temperature and total pressure are constants, BN+Si3N4 phase exists at a high partial pressure of NH3;(c) The effect of total system pressure is correlated to deposition temperature. The temperature ranging from 700 to 900 ℃ under low total pressure is the optimum condition for the deposition.(d) Appropriate kinetic parameters can be determined based on the results of thermodynamic calculation. Si–B–N coating is obtained via low pressure chemical vapor deposition. The analysis by X-ray photoelectron spectroscopy indicates that B–N and Si–N are the main chemical bonds of the coating.
基金Funded by the National Natural Science Foundation of China(Nos.51772246,51272210,50902112,and U1737209)the Program for New Century Excellent Talents in University(NCET-13-0474)+1 种基金the Fundamental Research Funds for the Central Universities(3102017jg02001)the National Program for Support of Topnotch Young Professionals
文摘Through finite element numerical simulation and based on laminated plate theory, the effect of dimension on the torsion properties of uniform C/SiC composites pipe was studied to provide a theoretical guidance for preparing the C/SiC pipe with different dimensions. The results show that, with increasing length of pipe, the anti-torsion section coefficient of pipe increases whereas the torsion angle per unit length decreases. Increasing the length can improve the torsion property. Anti-torsion section coefficient rises with increasing internal radius, while the torsion angle per unit length decreases to a constant. With increasing thickness, the anti-torsion section coefficient increases whereas the amplitude decreases gradually, and the torsion angle per unit length is a constant. Increment of internal radius and thickness improves the torsion property finitely.