为改善页岩油气水平井钻进过程中因钻井液封堵性能差而引起的井壁失稳问题,首先,对川南龙马溪组页岩组成和井壁失稳的原因进行了分析;然后,以十六烷基三乙氧基硅烷、氨丙基三乙氧基硅烷和活性碳纳米管为原料,合成了油基钻井液用纳微米...为改善页岩油气水平井钻进过程中因钻井液封堵性能差而引起的井壁失稳问题,首先,对川南龙马溪组页岩组成和井壁失稳的原因进行了分析;然后,以十六烷基三乙氧基硅烷、氨丙基三乙氧基硅烷和活性碳纳米管为原料,合成了油基钻井液用纳微米封堵剂(NP-1),分别利用红外光谱分析、热重分析、透射电镜和表面润湿性测试分析其结构和物理化学特性,考察了其与油基钻井液的配伍性;最后,通过岩心突破压力、压力传递、三轴抗压强度等测试评价其封堵性能,分析了纳微米封堵剂的作用机理,并进行了现场应用。结果表明,川南龙马溪组页岩纳微米孔喉较发育,毛细自吸现象严重,使得液相不断侵入井壁,最终导致井壁失稳。NP-1的直径为30~50nm,长度处于微米级别,表面疏水亲油,在385.2℃以下的热稳定性良好。NP-1与油基钻井液具有良好的配伍性和稳定性。在常规油基钻井液中加入3%NP-1,在180℃下老化热滚16 h后的高温高压滤失量由2.8 mL降至1.8 m L。含有NP-1的油基钻井液能有效封堵岩心端面,从而提高岩心突破压力,阻止岩心压力传递,稳定岩心内部结构和抗压强度,实现维持井壁稳定的目的。现场应用结果表明,NP-1能有效改善邻井因钻井液封堵能力弱而引起的井漏、井壁失稳等技术难题,处理后的平均井径扩大率仅为5.61%。该纳微米封堵剂在油基钻井液中对页岩具有优异的封堵效果,为川南类似复杂页岩气井的高效钻探提供了借鉴。展开更多
By summarizing the composition,classification,and performance characterization of functional adhesive materials,the adhesion mechanisms of functional adhesive materials,such as adsorption/surface reaction,diffusion,me...By summarizing the composition,classification,and performance characterization of functional adhesive materials,the adhesion mechanisms of functional adhesive materials,such as adsorption/surface reaction,diffusion,mechanical interlocking,and electrostatic adsorption,are expounded.The research status of these materials in oil and gas drilling and production engineering field such as lost circulation prevention/control,wellbore stabilization,hydraulic fracturing,and profile control and water plugging,and their application challenges and prospects in oil and gas drilling and production are introduced comprehensively.According to the applications of functional adhesive materials in the field of oil and gas drilling and production at this stage,the key research directions of functional adhesive materials in the area of oil and gas drilling and production are proposed:(1)blending and modifying thermoplastic resins or designing curable thermoplastic resins to improve the bonding performance and pressure bearing capacity of adhesive lost circulation materials;(2)introducing low-cost adhesive groups and positive charge structures into polymers to reduce the cost of wellbore strengthening agents and improve their adhesion performance on the wellbore;(3)introducing thermally reversible covalent bond into thermosetting resin to prevent backflow of proppant and improve the compressive strength of adhesive proppant;(4)introducing thermally reversible covalent bonds into thermoplastic polymers to improve the temperature resistance,salt-resistance and water shutoff performance of adhesive water shutoff agents.展开更多
By reviewing the mechanisms of drilling fluid lost circulation and its control in fractured formations, the applicability and working mechanisms of different kinds of lost circulation materials in plugging fractured f...By reviewing the mechanisms of drilling fluid lost circulation and its control in fractured formations, the applicability and working mechanisms of different kinds of lost circulation materials in plugging fractured formations have been summarized. Meanwhile, based on the types of lost circulation materials, the advantages, disadvantages, and application effects of corresponding plugging technologies have been analyzed to sort out the key problems existing in the current lost circulation control technologies. On this basis, the development direction of plugging technology for severe loss have been pointed out. It is suggested that that the lost circulation control technology should combine different disciplines such as geology, engineering and materials to realize integration, intelligence and systematization in the future. Five research aspects should be focused on:(1) the study on mechanisms of drilling fluid lost circulation and its control to provide basis for scientific selection of lost circulation material formulas, control methods and processes;(2) the research and development of self-adaptive lost circulation materials to improve the matching relationship between lost control materials and fracture scales;(3) the research and development of lost circulation materials with strong retention and strong filling in three-dimensional fracture space, to enhance the retention and filling capacities of materials in fractures and improve the lost circulation control effect;(4) the research and development of lost circulation materials with high temperature tolerance, to ensure the long-term plugging effect of deep high-temperature formations;(5) the study on digital and intelligent lost circulation control technology, to promote the development of lost circulation control technology to digital and intelligent direction.展开更多
Many measures, such as water injection, acid fracturing, thermal recovery, have been taken in the oilfield development. These can easily induce brittle fracture of set cement. Most of all, there are greater potential ...Many measures, such as water injection, acid fracturing, thermal recovery, have been taken in the oilfield development. These can easily induce brittle fracture of set cement. Most of all, there are greater potential for fractures in set cement in slim holes. Therefore, it is necessary to improve the toughness of the cement mantle. Results obtained from experiments show that carbon fiber, with a concentration of 0.12%-0.19% in cement and a length of 700 to 1,400μm, plays an important role in improving cement quality. Addition of carbon fiber can improve the bending strength of set cement by up to 30%. At the same time, the increase in fiber concentration can lower the elastic modulus and increase the Poisson's ratio of set cement. Thin-section analysis shows that fiber can effectively prevent the propagation of fractures and enhance the plasticity of the matrix and the ability to prevent fracture.展开更多
To address present concerns about thickening time and high early-strength in deepwater cementing at low temperatures when using conventional accelerators, a new type of set-accelerating admixture comprising of lithium...To address present concerns about thickening time and high early-strength in deepwater cementing at low temperatures when using conventional accelerators, a new type of set-accelerating admixture comprising of lithium chloride, aluminium hydroxide and alkaline metal chlorides, named as LS-A, was studied in this paper. Mechanism analysis and performance tests show that the accelerator LS-A accelerated the hydration of tri- and dicalcium silicates (C3S and C2S) at low-temperatures by speeding up the breakdown of the protective hydration film and shortening the hydration induction period. Therefore, LS-A could shorten the low-temperature thickening time and the transition time of critical gel strength from 48 to 240 Pa of the Class-G cement slurry, and improve the early compressive strength of set cement at low-temperatures. It exhibited better performance than calcium chloride and had no effect on the type of hydration products, which remain the same as those of neat Class-G cement, i.e. the calcium silicate gel, Ca(OH)2 crystals and a small amount of ettringite AFt crystals. LS-A provides an effective way to guarantee the safety of cementing operations, and to solve the problems of low temperature and shallow water/gas flowing faced in deepwater cementing.展开更多
Through embedding modified nano-silica particles on the surface of polystyrene using the method of Pickering emulsion polymerization,a kind of nano/micro oleophobic agent named OL-1 was developed.The effects of OL-1 o...Through embedding modified nano-silica particles on the surface of polystyrene using the method of Pickering emulsion polymerization,a kind of nano/micro oleophobic agent named OL-1 was developed.The effects of OL-1 on the rock surface properties and its performance in inhibiting the oil phase imbibition into the rock were explored.The performance and mechanisms of OL-1 in improving the wellbore stability of shale gas wells were evaluated and analyzed.OL-1 could absorb on the surface of the shale core to form a membrane with a micro-nano two-stage roughness,making the surface energy of the core decrease to 0.13 mN/m and the contact angle of the white oil on the core surface increase from 16.39°to 153.03°.Compared with the untreated capillary tube,when immersed into 3#white oil,the capillary tube treated by OL-1 had a reversal of capillary pressure from 273.76 Pa to-297.71 Pa,and the oil imbibition height inside the capillary tube decreased from 31 mm above the external liquid level to 33 mm below the external liquid level.The amount of oil invading into the rock core modified by OL-1 decreased by 64.29%compared with the untreated one.The shale core immersed into the oil-based drilling fluids with 1%OL-1 had a porosity reduction rate of only 4.5%.Compared with the core immersed in the drilling fluids without OL-1,the inherent force of the core treated by 1%OL-1 increased by 24.9%,demonstrating that OL-1 could effectively improve the rock mechanical stability by inhibiting oil phase imbibition.展开更多
As formation mechanisms of plugging zone and criteria for fracture plugging remain unclear,plugging experiments and methods testing granular material mechanical properties are used to study the formation process of th...As formation mechanisms of plugging zone and criteria for fracture plugging remain unclear,plugging experiments and methods testing granular material mechanical properties are used to study the formation process of the plugging zone in fractured formations,analyze composition and ratios of different sizes of particles in the plugging zone,and reveal the essence and driving energy of the formation and damage of the plugging zone.New criteria for selecting lost circulation materials are proposed.The research results show that the formation of the plugging zone has undergone a process from inertial flow,elastic flow,to quasi-static flow.The plugging zone is composed of fracture mouth plugging particles,bridging particles and filling particles,and the proportion of the three types of particles is an important basis for designing drilling fluid loss control formula.The essence of the construction of the plugging zone is non-equilibrium Jamming phase transition.The response of the plugging zone particle system to pressure is driven by entropy force;the greater the entropy,the more stable the plugging zone.Lost circulation control formula optimized according to the new criteria has better plugging effect than the formula made according to conventional plugging rules and effectively improves the pressure-bearing capacity of the plugging zone.The research results provide a theoretical and technical basis for the lost circulation control of fractured formations.展开更多
文摘为改善页岩油气水平井钻进过程中因钻井液封堵性能差而引起的井壁失稳问题,首先,对川南龙马溪组页岩组成和井壁失稳的原因进行了分析;然后,以十六烷基三乙氧基硅烷、氨丙基三乙氧基硅烷和活性碳纳米管为原料,合成了油基钻井液用纳微米封堵剂(NP-1),分别利用红外光谱分析、热重分析、透射电镜和表面润湿性测试分析其结构和物理化学特性,考察了其与油基钻井液的配伍性;最后,通过岩心突破压力、压力传递、三轴抗压强度等测试评价其封堵性能,分析了纳微米封堵剂的作用机理,并进行了现场应用。结果表明,川南龙马溪组页岩纳微米孔喉较发育,毛细自吸现象严重,使得液相不断侵入井壁,最终导致井壁失稳。NP-1的直径为30~50nm,长度处于微米级别,表面疏水亲油,在385.2℃以下的热稳定性良好。NP-1与油基钻井液具有良好的配伍性和稳定性。在常规油基钻井液中加入3%NP-1,在180℃下老化热滚16 h后的高温高压滤失量由2.8 mL降至1.8 m L。含有NP-1的油基钻井液能有效封堵岩心端面,从而提高岩心突破压力,阻止岩心压力传递,稳定岩心内部结构和抗压强度,实现维持井壁稳定的目的。现场应用结果表明,NP-1能有效改善邻井因钻井液封堵能力弱而引起的井漏、井壁失稳等技术难题,处理后的平均井径扩大率仅为5.61%。该纳微米封堵剂在油基钻井液中对页岩具有优异的封堵效果,为川南类似复杂页岩气井的高效钻探提供了借鉴。
基金Supported by National Natural Science Foundation of China(51991361,52074327)Major Engineering Technology Field Test Project of CNPC(2020F-45)。
文摘By summarizing the composition,classification,and performance characterization of functional adhesive materials,the adhesion mechanisms of functional adhesive materials,such as adsorption/surface reaction,diffusion,mechanical interlocking,and electrostatic adsorption,are expounded.The research status of these materials in oil and gas drilling and production engineering field such as lost circulation prevention/control,wellbore stabilization,hydraulic fracturing,and profile control and water plugging,and their application challenges and prospects in oil and gas drilling and production are introduced comprehensively.According to the applications of functional adhesive materials in the field of oil and gas drilling and production at this stage,the key research directions of functional adhesive materials in the area of oil and gas drilling and production are proposed:(1)blending and modifying thermoplastic resins or designing curable thermoplastic resins to improve the bonding performance and pressure bearing capacity of adhesive lost circulation materials;(2)introducing low-cost adhesive groups and positive charge structures into polymers to reduce the cost of wellbore strengthening agents and improve their adhesion performance on the wellbore;(3)introducing thermally reversible covalent bond into thermosetting resin to prevent backflow of proppant and improve the compressive strength of adhesive proppant;(4)introducing thermally reversible covalent bonds into thermoplastic polymers to improve the temperature resistance,salt-resistance and water shutoff performance of adhesive water shutoff agents.
基金Supported by National Natural Science Foundation of China(51991361,52074327,U1762212)Major Engineering Technology Field Tes Project of CNPC(2020F-45)。
文摘By reviewing the mechanisms of drilling fluid lost circulation and its control in fractured formations, the applicability and working mechanisms of different kinds of lost circulation materials in plugging fractured formations have been summarized. Meanwhile, based on the types of lost circulation materials, the advantages, disadvantages, and application effects of corresponding plugging technologies have been analyzed to sort out the key problems existing in the current lost circulation control technologies. On this basis, the development direction of plugging technology for severe loss have been pointed out. It is suggested that that the lost circulation control technology should combine different disciplines such as geology, engineering and materials to realize integration, intelligence and systematization in the future. Five research aspects should be focused on:(1) the study on mechanisms of drilling fluid lost circulation and its control to provide basis for scientific selection of lost circulation material formulas, control methods and processes;(2) the research and development of self-adaptive lost circulation materials to improve the matching relationship between lost control materials and fracture scales;(3) the research and development of lost circulation materials with strong retention and strong filling in three-dimensional fracture space, to enhance the retention and filling capacities of materials in fractures and improve the lost circulation control effect;(4) the research and development of lost circulation materials with high temperature tolerance, to ensure the long-term plugging effect of deep high-temperature formations;(5) the study on digital and intelligent lost circulation control technology, to promote the development of lost circulation control technology to digital and intelligent direction.
文摘Many measures, such as water injection, acid fracturing, thermal recovery, have been taken in the oilfield development. These can easily induce brittle fracture of set cement. Most of all, there are greater potential for fractures in set cement in slim holes. Therefore, it is necessary to improve the toughness of the cement mantle. Results obtained from experiments show that carbon fiber, with a concentration of 0.12%-0.19% in cement and a length of 700 to 1,400μm, plays an important role in improving cement quality. Addition of carbon fiber can improve the bending strength of set cement by up to 30%. At the same time, the increase in fiber concentration can lower the elastic modulus and increase the Poisson's ratio of set cement. Thin-section analysis shows that fiber can effectively prevent the propagation of fractures and enhance the plasticity of the matrix and the ability to prevent fracture.
基金provided by the Ph.D.Programs Foundation of Ministry of Education of China(Grant No.20100133120004)National Major Science and TechnologyProject of China(Grant No.2009ZX05060)National High Technology Research and Development Programof China(863program,Grant No.2006AA09Z340)
文摘To address present concerns about thickening time and high early-strength in deepwater cementing at low temperatures when using conventional accelerators, a new type of set-accelerating admixture comprising of lithium chloride, aluminium hydroxide and alkaline metal chlorides, named as LS-A, was studied in this paper. Mechanism analysis and performance tests show that the accelerator LS-A accelerated the hydration of tri- and dicalcium silicates (C3S and C2S) at low-temperatures by speeding up the breakdown of the protective hydration film and shortening the hydration induction period. Therefore, LS-A could shorten the low-temperature thickening time and the transition time of critical gel strength from 48 to 240 Pa of the Class-G cement slurry, and improve the early compressive strength of set cement at low-temperatures. It exhibited better performance than calcium chloride and had no effect on the type of hydration products, which remain the same as those of neat Class-G cement, i.e. the calcium silicate gel, Ca(OH)2 crystals and a small amount of ettringite AFt crystals. LS-A provides an effective way to guarantee the safety of cementing operations, and to solve the problems of low temperature and shallow water/gas flowing faced in deepwater cementing.
基金Supported by the CNPC Scientific Research and Technological Development Project(2021DJ3804)Scientific Research and Technological Development Project of PetroChina Company Limited(2020E-2803(JT))China CNPC Low Carbon Strategic Forward-Looking Major Science and Technology Project(2021DJ6601).
文摘Through embedding modified nano-silica particles on the surface of polystyrene using the method of Pickering emulsion polymerization,a kind of nano/micro oleophobic agent named OL-1 was developed.The effects of OL-1 on the rock surface properties and its performance in inhibiting the oil phase imbibition into the rock were explored.The performance and mechanisms of OL-1 in improving the wellbore stability of shale gas wells were evaluated and analyzed.OL-1 could absorb on the surface of the shale core to form a membrane with a micro-nano two-stage roughness,making the surface energy of the core decrease to 0.13 mN/m and the contact angle of the white oil on the core surface increase from 16.39°to 153.03°.Compared with the untreated capillary tube,when immersed into 3#white oil,the capillary tube treated by OL-1 had a reversal of capillary pressure from 273.76 Pa to-297.71 Pa,and the oil imbibition height inside the capillary tube decreased from 31 mm above the external liquid level to 33 mm below the external liquid level.The amount of oil invading into the rock core modified by OL-1 decreased by 64.29%compared with the untreated one.The shale core immersed into the oil-based drilling fluids with 1%OL-1 had a porosity reduction rate of only 4.5%.Compared with the core immersed in the drilling fluids without OL-1,the inherent force of the core treated by 1%OL-1 increased by 24.9%,demonstrating that OL-1 could effectively improve the rock mechanical stability by inhibiting oil phase imbibition.
基金Supported by National Natural Science Foundation of China(51991361,52074327)Major Engineering Technology Field Test Project of CNPC(2020F-45)。
文摘As formation mechanisms of plugging zone and criteria for fracture plugging remain unclear,plugging experiments and methods testing granular material mechanical properties are used to study the formation process of the plugging zone in fractured formations,analyze composition and ratios of different sizes of particles in the plugging zone,and reveal the essence and driving energy of the formation and damage of the plugging zone.New criteria for selecting lost circulation materials are proposed.The research results show that the formation of the plugging zone has undergone a process from inertial flow,elastic flow,to quasi-static flow.The plugging zone is composed of fracture mouth plugging particles,bridging particles and filling particles,and the proportion of the three types of particles is an important basis for designing drilling fluid loss control formula.The essence of the construction of the plugging zone is non-equilibrium Jamming phase transition.The response of the plugging zone particle system to pressure is driven by entropy force;the greater the entropy,the more stable the plugging zone.Lost circulation control formula optimized according to the new criteria has better plugging effect than the formula made according to conventional plugging rules and effectively improves the pressure-bearing capacity of the plugging zone.The research results provide a theoretical and technical basis for the lost circulation control of fractured formations.