期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
压榨法制备接骨木籽油工艺优化及其活性成分分析 被引量:1
1
作者 叶美金 杨玉敏 +3 位作者 易瑞 程远杨 何咨霆 张扬 《中国油脂》 CAS CSCD 北大核心 2022年第11期1-3,15,共4页
为了促进接骨木籽的利用,采用压榨法制取接骨木籽油。以提油率为考察指标,通过单因素试验和正交试验对接骨木籽油的制备工艺进行了优化,同时对接骨木籽油的活性成分进行了分析。结果表明:压榨法制备接骨木籽油的最佳工艺条件为入榨水分... 为了促进接骨木籽的利用,采用压榨法制取接骨木籽油。以提油率为考察指标,通过单因素试验和正交试验对接骨木籽油的制备工艺进行了优化,同时对接骨木籽油的活性成分进行了分析。结果表明:压榨法制备接骨木籽油的最佳工艺条件为入榨水分含量7.0%、压榨机转速60 r/min、压榨温度90℃,在此条件下接骨木籽提油率为82.1%;接骨木籽油不饱和脂肪酸含量高达82.08%,维生素E、多酚、总黄酮的含量分别为23.8、32.7、38.3 mg/kg。接骨木籽油可作为一种优质植物油进行开发。 展开更多
关键词 压榨法 接骨木籽油 维生素E 多酚 总黄酮
下载PDF
Recognition of LPI radar signal based on dual efficient network
2
作者 Li Hui Qin Yibo +1 位作者 Hou Qinghua cheng yuanyang 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2024年第5期12-22,共11页
Addressing the issue of low pulse identification rates for low probability of intercept(LPI)radar signals under low signal-to-noise ratio(SNR)conditions,this paper aims to investigate a new method in the field of deep... Addressing the issue of low pulse identification rates for low probability of intercept(LPI)radar signals under low signal-to-noise ratio(SNR)conditions,this paper aims to investigate a new method in the field of deep learning to recognize modulation types of LPI radar signals efficiently.A novel algorithm combining dual efficient network(DEN)and non-local means(NLM)denoising was proposed for the identification and selection of LPI radar signals.Time-domain signals for 12 radar modulation types were simulated,adding Gaussian white noise at various SNRs to replicate complex electronic countermeasure scenarios.On this basis,the noisy radar signals undergo Choi-Williams distribution(CWD)time-frequency transformation,converting the signals into two-dimensional(2D)time-frequency images(TFIs).The TFIs are then denoised using the NLM algorithm.Finally,the denoised data is fed into the designed DEN for training and testing,with the selection results output through a softmax classifier.Simulation results demonstrate that at an SNR of-8 dB,the algorithm can achieve a recognition accuracy of 97.22%for LPI radar signals,exhibiting excellent performance under low SNR conditions.Comparative demonstrations prove that the DEN has good robustness and generalization performance under conditions of small sample sizes.This research provides a novel and effective solution for further improving the accuracy of identification and selection of LPI radar signals. 展开更多
关键词 Choi-Williams distribution(CWD) dual efficient network(DEN) low probability of intercept(LPI)radar signals non-local means(NLM)denoising
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部