期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Seismic stability analysis of concrete gravity dams with penetrated cracks 被引量:2
1
作者 Shou-yan JIANG cheng-bin du 《Water Science and Engineering》 EI CAS 2012年第1期105-119,共15页
The seismic stability of a cracked dam was examined in this study. Geometric nonlinearity and large deformations, as well as the contact condition at the crack site, were taken into consideration. The location of pene... The seismic stability of a cracked dam was examined in this study. Geometric nonlinearity and large deformations, as well as the contact condition at the crack site, were taken into consideration. The location of penetrated cracks was first identified using the concrete plastic-damage model based on the nonlinear finite element method (FEM). Then, the hard contact algorithm was used to simulate the crack interaction in the normal direction, and the Coloumb friction model was used to simulate the crack interaction in the tangential direction. After verification of numerical models through a case study, the seismic stability of the Koyna Dam with two types of penetrated cracks is discussed in detail with different seismic peak accelerations, and the collapse processes of the cracked dam are also presented. The results show that the stability of the dam with two types of penetrated cracks can be ensured in an earthquake with a magnitude of the original Koyna earthquake, and the cracked dam has a large earthquake-resistant margin. The failure processes of the cracked dam in strong earthquakes can be divided into two stages: the sliding stage and the overturning stage. The sliding stage ends near the peak acceleration, and the top block slides a long distance along the crack before the collapse occurs. The maximum sliding displacement of the top block will decrease with an increasing friction coefficient at the crack site. 展开更多
关键词 seismic stability concrete gravity dam penetrated crack plastic-damage model hard contact algorithm Coloumb friction model joint opening
下载PDF
Design and performance study of a segmented intelligent isolation bearing
2
作者 Guo-Jun Yu Xi-Xi Wen +2 位作者 cheng-bin du Ling-Yun Wang Shao-Jie Zhu 《International Journal of Smart and Nano Materials》 SCIE EI 2021年第4期511-532,共22页
In this paper,a novel type of isolator,named segmented intelligent isolation bearing(SIIB),is designed and manufactured,which can meet the requirements of seismic fortification under three seismic intensities,i.e.freq... In this paper,a novel type of isolator,named segmented intelligent isolation bearing(SIIB),is designed and manufactured,which can meet the requirements of seismic fortification under three seismic intensities,i.e.frequent intensity,basic intensity,and rare intensity.A theoretical formula for the output of the SIIB is established to provide a basis for the determination of the size of the SIIB.MRE and STMP used in SIIB were prepared,of which the changes of shear storage modulus and damping factor with the magnetic field under different strain are analyzed.The mechanical properties of the SIIB under small displacement,medium displacement,and large displacement are tested,respectively,and the hysteretic characteristics of force–displacement are analyzed.The dynamic mechanical model combining the rheological model,phenomenological model,and bilinear restoring force model is established to represent the behavior of the SIIB.The results showed that the theoretical results agree well with the experimental results,and the model can significantly reflect the dynamic characteristics of SIIB. 展开更多
关键词 ISOLATION magnetorheological elastomer(MRE) shear thickening magnetorheological plastics(STMP) performance analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部