期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Accreting CO material onto ONe white dwarfs towards accretion-induced collapse
1
作者 cheng-yuan wu Bo Wang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2018年第3期121-128,共8页
The final outcomes of accreting ONe white dwarfs(ONe WDs) have been studied for several decades,but there are still some issues that are not resolved. Recently,some studies suggested that the deflagration of oxygen ... The final outcomes of accreting ONe white dwarfs(ONe WDs) have been studied for several decades,but there are still some issues that are not resolved. Recently,some studies suggested that the deflagration of oxygen would occur for accreting ONe WDs with Chandrasekhar masses. In this paper,we aim to investigate whether ONe WDs can experience accretion-induced collapse(AIC) or explosions when their masses approach the Chandrasekhar limit. Employing the stellar evolution code Modules for Experiments in Stellar Astrophysics(MESA),we simulate the longterm evolution of ONe WDs with accreting CO material. The ONe WDs undergo weak multicycle carbon flashes during the mass-accretion process,leading to mass increase of the WDs. We found that different initial WD masses and mass-accretion rates influence the evolution of central density and temperature. However,the central temperature cannot reach the explosive oxygen ignition temperature due to neutrino cooling. This work implies that the final outcome of accreting ONe WDs is electroncapture induced collapse rather than thermonuclear explosion. 展开更多
关键词 STARS evolution - binaries close - supernovae general - white dwarfs
下载PDF
The C/O ratio of He-accreting carbon-oxygen white dwarfs and type Ia supernovae
2
作者 崔晓 王博 +2 位作者 吴程远 孟祥存 韩占文 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2020年第1期19-26,共8页
Type Ia supernovae(SNe Ia)are thermonuclear explosions of carbon-oxygen white dwarfs(CO WDs),and are believed to be excellent cosmological distance indicators due to their high luminosity and remarkable uniformity.How... Type Ia supernovae(SNe Ia)are thermonuclear explosions of carbon-oxygen white dwarfs(CO WDs),and are believed to be excellent cosmological distance indicators due to their high luminosity and remarkable uniformity.However,there exists a diversity among SNe Ia,and a poor understanding of the diversity hampers the improvement of the accuracy of cosmological distance measurements.The variations of the ratios of carbon to oxygen(C/O)of WDs at explosion are suggested to contribute to the diversity.In the canonical model of SNe Ia,a CO WD accretes matter from its companion and increases its mass till the Chandrasekhar mass limit when the WD explodes.In this work,we studied the C/O ratio for accreting CO WDs.Employing the stellar evolution code MESA,we simulated the accretion of He-rich material onto CO WDs with different initial WD masses and different mass accretion rates.We found that the C/O ratio varies for different cases.The C/O ratio of He-accreting CO WDs at explosion increases with a decreasing initial WD mass or a decreasing accretion rate.The various C/O ratios may,therefore,contribute to the diversity of SNe Ia. 展开更多
关键词 stars:evolution supernovae:general white dwarfs
下载PDF
Is the X-ray pulsating companion of HD 49798 a possible type Ia supernova progenitor?
3
作者 Dong-Dong Liu Wei-Hong Zhou +1 位作者 cheng-yuan wu Bo Wang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2015年第11期1813-1822,共10页
HD 49798(a hydrogen depleted subdwarf O6 star) with its massive white dwarf(WD) companion has been suggested to be a progenitor candidate of a type Ia supernova(SN Ia). However, it is still uncertain whether the... HD 49798(a hydrogen depleted subdwarf O6 star) with its massive white dwarf(WD) companion has been suggested to be a progenitor candidate of a type Ia supernova(SN Ia). However, it is still uncertain whether the companion of HD 49798 is a carbon-oxygen(CO) WD or an oxygen-neon(ONe) WD. A CO WD will explode as an SN Ia when its mass grows and approaches the Chandrasekhar limit, but the outcome of an accreting ONe WD is likely to be a neutron star. We generated a series of Monte Carlo calculations that incorperate binary population synthesis to simulate the formation of ONe WD + He star systems. We found that there is almost no orbital period as large as HD 49798 with its WD companion in these ONe WD + He star systems based on our simulations, which means that the companion of HD 49798 might not be an ONe WD. We suggest that the companion of HD 49798 is most likely a CO WD, which can be expected to increase its mass to the Chandrasekhar limit by accreting He-rich material from HD 49798. Thus, HD 49798 and its companion may produce an SN Ia as a result of its future evolution. 展开更多
关键词 progenitor primordial likely uncertain depleted ejection neutron orbital unstable dwarf
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部