The hydrogen-induced delayed fracture(HIDF)behavior of a 1300-MPa-grade high-strength bolt steel 42CrMoV containing 0.42 wt.%Cu was investigated by constant load tensile test in a pH 3.5 Walpole solution.It is shown t...The hydrogen-induced delayed fracture(HIDF)behavior of a 1300-MPa-grade high-strength bolt steel 42CrMoV containing 0.42 wt.%Cu was investigated by constant load tensile test in a pH 3.5 Walpole solution.It is shown that the addition of Cu is beneficial to enhance the HIDF resistance by~13%.The observation of the fracture surface revealed that the area fraction of brittle crack initiation zone decreased remarkably for the Cu-added steel.Both the corrosion pit depth and the corrosion rate of the Cu-added steel in the Walpole solution are notably decreased,which is primarily because of the formation of a Cu-rich protective compact rust layer and slightly higher corrosion potential.As a result,the absorbed hydrogen content in that solution was also decreased by~21%.It is concluded that the improvement in the HIDF resistance of the tested steel is primarily due to the increase in corrosion resistance and resultant decrease in the absorbed diffusible hydrogen content in the acidic condition.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.52071010).
文摘The hydrogen-induced delayed fracture(HIDF)behavior of a 1300-MPa-grade high-strength bolt steel 42CrMoV containing 0.42 wt.%Cu was investigated by constant load tensile test in a pH 3.5 Walpole solution.It is shown that the addition of Cu is beneficial to enhance the HIDF resistance by~13%.The observation of the fracture surface revealed that the area fraction of brittle crack initiation zone decreased remarkably for the Cu-added steel.Both the corrosion pit depth and the corrosion rate of the Cu-added steel in the Walpole solution are notably decreased,which is primarily because of the formation of a Cu-rich protective compact rust layer and slightly higher corrosion potential.As a result,the absorbed hydrogen content in that solution was also decreased by~21%.It is concluded that the improvement in the HIDF resistance of the tested steel is primarily due to the increase in corrosion resistance and resultant decrease in the absorbed diffusible hydrogen content in the acidic condition.