期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Study of temperature and precipitation change in upstream mountain area of the Hexi inland river basin since 1960s 被引量:4
1
作者 YongChao lan Honglang Xiao +4 位作者 XingLin Hu HongWei Ding SongBing Zou chengfang la Jie Song 《Research in Cold and Arid Regions》 2012年第6期522-535,共14页
All rivers in the Hexi inland region of Gansu Province, China, originate from the northern slope of the Qilian Mountains. They are located in the southern portion of the region and respectively belong to the three lar... All rivers in the Hexi inland region of Gansu Province, China, originate from the northern slope of the Qilian Mountains. They are located in the southern portion of the region and respectively belong to the three large river systems from east to west, the Shiyang, Heihe and Shule river basins. These rivers are supplied by precipitation, snowmelt and ice-melt runoff from the Qilian Mountain area. Therefore, changes of precipitation and temperature in the upstream watersheds of these rivers have an important effect on changes of mountainous runoff and reasonable utilization of water resources in this region. For this reason, the Qilian Mountain area, upstream watersheds and runoff forming areas of these rivers are chosen as the study area. The change characteristics and variation trend of temperature and precipitation in this area under the backdrop of global warming are analyzed based on observational data of relational weather and hydrologic stations in the area. Results show that temperatures in the upriver mountain areas of these three large river basins have been increasing, although the increasing degree is differentially affected by global warming. The rising extent of annual and seasonal temperatures in the upstream mountain area of the Shule river basin located in the western Qilian Mountains, were all largest over the past 50 years. Precipitation in the upstream mountain areas of Hexi region' three river basins located respectively in the western, middle and eastern Qilian Mountains have been presenting an increasing trend to varying degrees as a whole for more than 50 years. This means that climate in the upstream mountain areas of Hexi region' three river basins are becoming increasingly warmer and moister over the past 50 years, which will be very good for the ecological environment and agricultural production in the region. 展开更多
关键词 河西内陆河流域 祁连山区 降水变化 上游 气温 全球气候变暖 祁连山北坡 疏勒河流域
下载PDF
Climate transformation to warm-humid and its effect on river runoff in the source region of the Yellow River 被引量:1
2
作者 YongChao lan HuiJun Jin +3 位作者 chengfang la Jun Wen Jie Song JinPeng Liu 《Research in Cold and Arid Regions》 CSCD 2014年第3期257-265,共9页
The change characteristics and trends of the regional climate in the source region of the Yellow River, and the response of runoff to climate change, are analyzed based on observational data of air temperature, precip... The change characteristics and trends of the regional climate in the source region of the Yellow River, and the response of runoff to climate change, are analyzed based on observational data of air temperature, precipitation, and runoff at 10 main hydrological and weather stations in the region. Our results show that a strong signal of climate shift from warm-dry to warm-humid in the western parts of northwestern China(Xinjiang) and the western Hexi Corridor of Gansu Province occurred in the late 1980 s, and a same signal of climate change occurred in the mid-2000s in the source region of the Yellow River located in the eastern part of northwestern China. This climate changeover has led to a rapid increase in rainfall and stream runoff in the latter region. In most of the years since 2004 the average annual precipitation in the source region of the Yellow River has been greater than the long-term average annual value, and after 2007 the runoff measured at all of the hydrologic sections on the main channel of the Yellow River in the source region has also consistently exceeded the long-term average annual because of rainfall increase. It is difficult to determine the prospects of future climate change until additional observations and research are conducted on the rate and temporal and spatial extents of climate change in the region. Nevertheless, we predict that the climate shift from warm-dry to warm-humid in the source region of the Yellow River is very likely to be in the decadal time scale, which means a warming and rainy climate in the source region of the Yellow River will continue in the coming decades. 展开更多
关键词 河流径流量 黄河源区 气候转变 湿润 温暖 年平均降水量 未来气候变化 中国西北地区
下载PDF
Sensitivity of mountain runoff to climate change for Urumqi and Kaidu rivers originating from the Tianshan Mountains
3
作者 YongChao lan ZhengYao Ma +4 位作者 YongPing Shen chengfang la Jie Song XingLin Hu HongWei Din 《Research in Cold and Arid Regions》 2011年第3期274-280,共7页
The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends o... The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends on variation of temperature, precipi- tation and runoff, and the correlativity between temperature, precipitation, and runoff were analyzed based on the past 40 years of observational data from the correlative hydrological and weather stations in the study areas. Various weather scene combinations are assumed and the response models of runoff to climate change are established in order to evaluate the sensitivity of runoff to climate change in the study areas based on the foregoing analysis. Results show that all variations of temperature, precipitation, and runoff overall present an oscillating and increasing trend since the 1960s and this increase are quite evident after 1990. There is a markedly positive correlation between mountain runoff, temperature, and precipitation while there are obvious regional dif- ferences of responding degree to precipitation and temperature between mountain runoff of Urumqi River and Kaidu River Basins. Also, mountain runoff of Urumqi River Basin is more sensitive to precipitation change than that of Kaidu River Basin, and moun- tain runoff of Kaidu River Basin is more sensitive to temperature change than that of Urumqi River Basin. 展开更多
关键词 乌鲁木齐河 流域径流 气候变化 新疆天山 敏感性 开都河 山区 温度响应
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部