Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effecti...Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effectively reduce the exploitation cost of the gas hydrate.In this study,three types of models accounting for the coexistence of these gases are considered.Type A considers the upper hydrate-bearing layer(HBL)adjacent to the lower conventional gas layer(CGL);with the Type B a permeable interlayer exists between the upper HBL and the lower CGL;with the type C there is an impermeable interlayer between the upper HBL and the lower CGL.The production performances associated with the above three models are calculated under different conditions,including only a depressurized HBL(only HBL DP);only a depressurized CGL(only CGL DP);and both the HBL and the CGL being depressurized(HBL+CGL DP).The results show that for Type A and Type B coexistence accumulation models,when only HBL or CGL is depressurized,the gas from the other layer will flow into the production layer due to the pressure difference between the two layers.In the coexistence accumulation model of type C,the cumulative gas production is much lower than that of Type A and Type B,regardless of whether only HBL DP,only CGL DP,or HBL+CGL DP are considered.This indicates that the impermeable interlayer restricts the cross-flow of gas between HBL and CGL.For three different coexistence accumulation models,CGL DP has the largest gas-to-water ratio.展开更多
By reasearch on geographic distribution, nine genera in bipolar distribution are selected from Permian brachiopods. These taxa originated from middle-high latitude areas in the boreal realm, of which five genera were ...By reasearch on geographic distribution, nine genera in bipolar distribution are selected from Permian brachiopods. These taxa originated from middle-high latitude areas in the boreal realm, of which five genera were derived from Late Carboniferous, and other four genera originated from Permian. They were all in bipolar distribution during some different stages in Permian. Specific diversity for each genus was high in the boreal realm, whereas in the Gondwana realm was very low. Perdurability was long in the boreal realm, and short in the Gondwana realm. It was the time when these nine genera came to their maximum diversity that these genera appeared in the Gondwana and formed bipolar distribution; while they also migrated to the low latitude from high latitude. This shows very close relationship between several main cooling events in Permian and the migration of genera from the boreal realm to the Gondwana reahn through the Tethys. Therefore, the cooling events might be the main drive which caused these cold-water-type brachiopods migrated to the Gondwana realm and being bipolar distribution. In this process, the planula tolerance to warm water would be another important factor.展开更多
An analysis of the distribution of the Late Paleozoic strata on Northeast China and adjacent region reveals a zonal pattern of the distribution around the core of the Jiamusi-Mongolia Block. The main part of Late Pale...An analysis of the distribution of the Late Paleozoic strata on Northeast China and adjacent region reveals a zonal pattern of the distribution around the core of the Jiamusi-Mongolia Block. The main part of Late Paleozoic marine strata in this area is co展开更多
Catalytic fast pyrolysis (CFP) of Kraft lignins with HZSM-5 zeolite for producing aromatics was investigated using analytical pyrolysis methods. Two Kraft lignins were fast pyrolyzed in the absence and presence of H...Catalytic fast pyrolysis (CFP) of Kraft lignins with HZSM-5 zeolite for producing aromatics was investigated using analytical pyrolysis methods. Two Kraft lignins were fast pyrolyzed in the absence and presence of HZSM-5 in a Curie-point pyrolyzer. Without the catalyst, fast pyrolysis of lignin predominantly produced phenols and guaiacols that were derived from the subunits of lignin. However, the presence of HZSM-5 changed the product distribution dramatically. As the SiO2/ A1203 ratio of HZSM-5 decreased from 200 to 25 and the catalyst-to-lignin ratio increased from 1 to 20, the lignin- derived oxygenates progressively decreased to trace and the aromatics increased substantially. The aromatic yield increased considerably as the pyrolysis temperature increased from 500~C to 650~C, but then decreased with yet further increase of pyrolysis temperature. Under optimal reaction conditions, the aromatic yields were 2.0 wt.% and 5.2 wt.% for the two lignins that had effective hydrogen indexes of 0.08 and 0.35.展开更多
The ultrasonic treatment of sludge has been considered as an effective method to facilitate the partial nitritation of municipal sewage.This study aims to reveal the effects of ultrasound on ammoniaoxidizing bacteria(...The ultrasonic treatment of sludge has been considered as an effective method to facilitate the partial nitritation of municipal sewage.This study aims to reveal the effects of ultrasound on ammoniaoxidizing bacteria(AOB)and nitrite-oxidizing bacteria(NOB).The impact factors including ultrasonic irradiation time and intensity,sludge concentration,thermal effect and released free radicals were studied.The maximized difference between the changes in AOB and NOB activities were obtained with 10 g mixed liquor suspended solids(MLSS)/L,using 0.9 kJ/mL ultrasonic energy density and 12 h interval time.The increased ultrasonic intensity destroyed the floc structure of activated sludge,increased the microbial death,and decreased the cellular ATP level.Further,the mechanism exploration indicated that the mechanical shearing could be a critical factor in achieving the nitritation with inhibitory effect on nitrite oxidation.展开更多
With the rapid development of urban underground space,the construction of shield-driven cross-river twin tunnels is increasing,and the complex hydro-mechanical coupling effects and twin-tunnel interactions bring huge ...With the rapid development of urban underground space,the construction of shield-driven cross-river twin tunnels is increasing,and the complex hydro-mechanical coupling effects and twin-tunnel interactions bring huge construction risks to such projects,which have attracted more and more attention.This study aims to understand the excavation effects induced by shield driving of cross-river twin tunnels through numerical simulation.A refined three-dimensional numerical model based on the fully coupled hydro-mechanical theory is established.The model considers the main components of the slurry pressure balance shield(SPBS)machine,including support force,jacking thrust,grouting pressure,shield-rock interaction and lining-grouting interaction,as well as the detailed construction process.The purpose is to examine the excavation effects during construction,including rock deformation around tunnels,the change in pore pressure,and the response of the lining.The results show the influence range of twin-tunnel excavation on rock deformation and pore pressure,as well as the modes of lining response.In addition,this study also systematically investigates the effects of water level fluctuation and burial depth on twin-tunnel excavation.The results indicate that the increase of water level or burial depth will enhance the excavation effects and strengthen the twin-tunnel interactions.These results provide useful insights for estimating the construction impact range and degree of twin tunnels,and serve as basic references for the design of cross-river twin tunnels.展开更多
基金supported by the National Natural Science Foundation of China (Nos.52074334,51991365)the National Key R&D Program of China (2021YFC2800903),which are gratefully acknowledged.
文摘Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effectively reduce the exploitation cost of the gas hydrate.In this study,three types of models accounting for the coexistence of these gases are considered.Type A considers the upper hydrate-bearing layer(HBL)adjacent to the lower conventional gas layer(CGL);with the Type B a permeable interlayer exists between the upper HBL and the lower CGL;with the type C there is an impermeable interlayer between the upper HBL and the lower CGL.The production performances associated with the above three models are calculated under different conditions,including only a depressurized HBL(only HBL DP);only a depressurized CGL(only CGL DP);and both the HBL and the CGL being depressurized(HBL+CGL DP).The results show that for Type A and Type B coexistence accumulation models,when only HBL or CGL is depressurized,the gas from the other layer will flow into the production layer due to the pressure difference between the two layers.In the coexistence accumulation model of type C,the cumulative gas production is much lower than that of Type A and Type B,regardless of whether only HBL DP,only CGL DP,or HBL+CGL DP are considered.This indicates that the impermeable interlayer restricts the cross-flow of gas between HBL and CGL.For three different coexistence accumulation models,CGL DP has the largest gas-to-water ratio.
基金Supported by Project of Doctoral Program of Ministry Education (No.20060183023)
文摘By reasearch on geographic distribution, nine genera in bipolar distribution are selected from Permian brachiopods. These taxa originated from middle-high latitude areas in the boreal realm, of which five genera were derived from Late Carboniferous, and other four genera originated from Permian. They were all in bipolar distribution during some different stages in Permian. Specific diversity for each genus was high in the boreal realm, whereas in the Gondwana realm was very low. Perdurability was long in the boreal realm, and short in the Gondwana realm. It was the time when these nine genera came to their maximum diversity that these genera appeared in the Gondwana and formed bipolar distribution; while they also migrated to the low latitude from high latitude. This shows very close relationship between several main cooling events in Permian and the migration of genera from the boreal realm to the Gondwana reahn through the Tethys. Therefore, the cooling events might be the main drive which caused these cold-water-type brachiopods migrated to the Gondwana realm and being bipolar distribution. In this process, the planula tolerance to warm water would be another important factor.
基金Supported by Science and Technology Project of Sinopec (Grant No. G0800-06-ZS-324) 1) Mineral Resources Authority of Mongolia. Geological Map of Mongolia (1:1000000), Ulaanbaatar. 1998 2) Kociurzhinskim B V, Poliakovym V M, Efriemovoii V N. Geological Map of Chita (1:1000000), Russia. 20003) Krasnyi L I, Peng Y B. Geological Map of Amur Region and Adjacent Areas (Scale 1:2500000), Harbin, China. 1996
文摘An analysis of the distribution of the Late Paleozoic strata on Northeast China and adjacent region reveals a zonal pattern of the distribution around the core of the Jiamusi-Mongolia Block. The main part of Late Paleozoic marine strata in this area is co
文摘Catalytic fast pyrolysis (CFP) of Kraft lignins with HZSM-5 zeolite for producing aromatics was investigated using analytical pyrolysis methods. Two Kraft lignins were fast pyrolyzed in the absence and presence of HZSM-5 in a Curie-point pyrolyzer. Without the catalyst, fast pyrolysis of lignin predominantly produced phenols and guaiacols that were derived from the subunits of lignin. However, the presence of HZSM-5 changed the product distribution dramatically. As the SiO2/ A1203 ratio of HZSM-5 decreased from 200 to 25 and the catalyst-to-lignin ratio increased from 1 to 20, the lignin- derived oxygenates progressively decreased to trace and the aromatics increased substantially. The aromatic yield increased considerably as the pyrolysis temperature increased from 500~C to 650~C, but then decreased with yet further increase of pyrolysis temperature. Under optimal reaction conditions, the aromatic yields were 2.0 wt.% and 5.2 wt.% for the two lignins that had effective hydrogen indexes of 0.08 and 0.35.
文摘The ultrasonic treatment of sludge has been considered as an effective method to facilitate the partial nitritation of municipal sewage.This study aims to reveal the effects of ultrasound on ammoniaoxidizing bacteria(AOB)and nitrite-oxidizing bacteria(NOB).The impact factors including ultrasonic irradiation time and intensity,sludge concentration,thermal effect and released free radicals were studied.The maximized difference between the changes in AOB and NOB activities were obtained with 10 g mixed liquor suspended solids(MLSS)/L,using 0.9 kJ/mL ultrasonic energy density and 12 h interval time.The increased ultrasonic intensity destroyed the floc structure of activated sludge,increased the microbial death,and decreased the cellular ATP level.Further,the mechanism exploration indicated that the mechanical shearing could be a critical factor in achieving the nitritation with inhibitory effect on nitrite oxidation.
基金supported by the National Natural Science Foundation of China(Grant Nos.52090081 and 52079068)the State Key Laboratory of Hydroscience and Hydraulic Engineering(Grant No.2021-KY-04).
文摘With the rapid development of urban underground space,the construction of shield-driven cross-river twin tunnels is increasing,and the complex hydro-mechanical coupling effects and twin-tunnel interactions bring huge construction risks to such projects,which have attracted more and more attention.This study aims to understand the excavation effects induced by shield driving of cross-river twin tunnels through numerical simulation.A refined three-dimensional numerical model based on the fully coupled hydro-mechanical theory is established.The model considers the main components of the slurry pressure balance shield(SPBS)machine,including support force,jacking thrust,grouting pressure,shield-rock interaction and lining-grouting interaction,as well as the detailed construction process.The purpose is to examine the excavation effects during construction,including rock deformation around tunnels,the change in pore pressure,and the response of the lining.The results show the influence range of twin-tunnel excavation on rock deformation and pore pressure,as well as the modes of lining response.In addition,this study also systematically investigates the effects of water level fluctuation and burial depth on twin-tunnel excavation.The results indicate that the increase of water level or burial depth will enhance the excavation effects and strengthen the twin-tunnel interactions.These results provide useful insights for estimating the construction impact range and degree of twin tunnels,and serve as basic references for the design of cross-river twin tunnels.