Bio-inspired hierarchical self-assembly provides elegant and powerful bottom-up strategies for the creation of complex materials.However,the current self-assembly approaches for natural bio-compounds often result in m...Bio-inspired hierarchical self-assembly provides elegant and powerful bottom-up strategies for the creation of complex materials.However,the current self-assembly approaches for natural bio-compounds often result in materials with limited diversity and complexity in architecture as well as microstructure.Here,we develop a novel coordination polymerization-driven hierarchical assembly of micelle strategy,using phytic acid-based natural compounds as an example,for the spatially controlled fabrication of metal coordination bio-derived polymers.The resultant ferric phytate polymer nanospheres feature hollow architecture,ordered meso-channels of^12 nm,high surface area of 401 m2 g−1,and large pore volume of 0.53 cm3 g−1.As an advanced anode material,this bio-derivative polymer delivers a remarkable reversible capacity of 540 mAh g−1 at 50 mA g−1,good rate capability,and cycling stability for sodium-ion batteries.This study holds great potential of the design of new complex bio-materials with supramolecular chemistry.展开更多
Rational design and precise regulation over the morphology, structure, and pore size of functional conducting mesoporous polymers with enriched active sites and shorten electron–ion transport pathway are extremely im...Rational design and precise regulation over the morphology, structure, and pore size of functional conducting mesoporous polymers with enriched active sites and shorten electron–ion transport pathway are extremely important for developing high-performance micro-supercapacitors (MSCs), but still remain a great challenge. Herein, a general dual-colloid interface co-assembly strategy is proposed to fabricate hollow mesoporous polypyrrole nano-bowls (mPPy-nbs) for high-energy-density solid-state planar MSCs. By simply adjusting the size of block copolymer micelles, the diameter of polystyrene nanospheres and the amount of pyrrole monomer, mesopore size of the shell, void and shell thickness of mPPy-nbs can be simultaneously controlled. Importantly, this strategy can be further utilized to synthesize other hollow mesoporous polymers, including poly(tris(4-aminophenyl)amine), poly(1,3,5-triaminobenzene) and their copolymers, demonstrative of excellent universality. The structurally optimized mPPy-nb exhibits high specific surface area of 122 m^(2) g^(−1)and large capacitance of 225 F g^(−1) at 1 mV s^(−1). Furthermore, the MSCs assembled by mPPy-nbs deliver impressive volumetric capacitance of 90 F cm^(−3) and energy density of 2.0 mWh cm^(−3), superior to the most reported polymers-based MSCs. Also, the fabricated MSCs present excellent flexibility with almost no capacitance decay under varying bending states, and robust serial/parallel self-integration for boosting voltage and capacitance output. Therefore, this work will inspire the new design of mesoporous conducting polymer materials toward high-performance microscale supercapacitive devices.展开更多
Terahertz (THz) transmission simulations play an important role in THz technology researches, especially for the structural design of a THz waveguide. Ray model takes into account both structure parameter of waveguide...Terahertz (THz) transmission simulations play an important role in THz technology researches, especially for the structural design of a THz waveguide. Ray model takes into account both structure parameter of waveguide and the divergence angle of beam light and could be an alternative way for THz transmission behavior simulations. In this paper, the ray model is used to calculate the transmission loss of tube waveguide, and the simulated transmission losses are presented to compare with the results calculated by COMSOL. The suitable THz frequency range of ray model is discussed by analyzing the transmission loss spectra of tube waveguides with various core sizes. The credibility of ray model on terahertz transmission simulations is demonstrated based on the experimental results tested by THz-TDS and calculated results.展开更多
Mesoporous polymers combine the advantages of polymer materials(abundant polar functional groups,lightweight,flexibility,and processability)and mesoporous structures(high specific surface area,adjustable pore structur...Mesoporous polymers combine the advantages of polymer materials(abundant polar functional groups,lightweight,flexibility,and processability)and mesoporous structures(high specific surface area,adjustable pore structure,and large pore volume);hence,they have great application potential in sensing,adsorption,catalysis,energy storage,biomedicine,etc.Currently,developing advanced synthetic strategies for mesoporous polymers and investigating their intrinsic applications have become hot research topics.Soft-template-based self-assembly is regarded as a promising approach for synthesizing mesoporous polymers.This work reviews recent progress in the synthetic strategy for producing various mesoporous polymers using soft-template selfassembly,focusing on the synthesis of conductive polymers,phenol-based polymers,and resin-based polymers and their potential applications.Finally,perspectives on future applications of mesoporous polymers,along with a few challenges that need to be resolved,are also discussed in this review.展开更多
Benefiting from abundant exposed active sites,minimized diffusion resistance of guest molecules,facilitated mass transfer process and enhanced storage capacity,covalent organic frameworks(COFs)have gained widespread s...Benefiting from abundant exposed active sites,minimized diffusion resistance of guest molecules,facilitated mass transfer process and enhanced storage capacity,covalent organic frameworks(COFs)have gained widespread scientific attention[1–4].Further construction of mesopores regarding pore engineering(pore size,pore geometry,pore volume,and framework compositions)in COFs can improve mass transport,accessibility as well as size-selectivity of the special guest moieties,thus exhibiting potential in catalysis,energy storage and separation and so on[5,6].展开更多
The poor stability of halide perovskite nanocrystals(NCs)has severely hindered future practical application.Herein,we proposed a facile and effective ligand modification route to synthesize stable CsPbBr_(3) nanocryst...The poor stability of halide perovskite nanocrystals(NCs)has severely hindered future practical application.Herein,we proposed a facile and effective ligand modification route to synthesize stable CsPbBr_(3) nanocrystals by introducing a double-terminal ligand,namely 4,4'-Azobis(4-cyanovalericacid)(CA),to replace the conventional oleic acid(OA)ligand at room temperature.The as-synthesized CsPbBr_(3)-CA not only possesses high photoluminescence quantum yield(72%)related to the reduced trap defects,but also shows significantly improved stability exposure to water,ethanol,light,and/or heat benefiting from the CA ligand anchored to NC surfaces tightly.The photoluminescence intensity of CsPbBr_(3)-CA maintains about 80%and 75%of its initial emission intensity after immersed in water or ethanol for 360 min,respectively,whereas that of the CsPbBr_(3)-OA was quenched completely within a few minutes.Moreover,an all-inorganic white light-emitting diode(LED)covered 126%National Television System Committee(NTSC)standard and 92%Rec.2020 standard was fabricated by combining the green CsPbBr_(3)-CA and commercial red-emitting K2SiF6:Mn4+(KSF)phosphors onto a blue LED chip.Thus,the presented work initiates the development of the room temperature preparation of high quality CsPbBr_(3) and shows prospect for next-generation displays.展开更多
Two-dimensional mesoporous materials combing ultrathin nanosheet morphology with well-defined mesoporous structures,are now emerging and becoming increasingly important for their promising applications in energy stora...Two-dimensional mesoporous materials combing ultrathin nanosheet morphology with well-defined mesoporous structures,are now emerging and becoming increasingly important for their promising applications in energy storage,electronic devices,electrocatalysts and so on.Here,we synthesized a kind of polypyrrole-based two-dimensional mesoporous materials with uniform pore size,ultrathin thickness and high surface area.Serving for electrochemical NH3 sensor,they exhibited a fast response and high sensitivity.Therefore,our study would promote much interest in design of new materials for gas sensor applications.展开更多
基金financially supported by the Natural Science Foundation of China (Grant Nos.51773062 and 61831021)
文摘Bio-inspired hierarchical self-assembly provides elegant and powerful bottom-up strategies for the creation of complex materials.However,the current self-assembly approaches for natural bio-compounds often result in materials with limited diversity and complexity in architecture as well as microstructure.Here,we develop a novel coordination polymerization-driven hierarchical assembly of micelle strategy,using phytic acid-based natural compounds as an example,for the spatially controlled fabrication of metal coordination bio-derived polymers.The resultant ferric phytate polymer nanospheres feature hollow architecture,ordered meso-channels of^12 nm,high surface area of 401 m2 g−1,and large pore volume of 0.53 cm3 g−1.As an advanced anode material,this bio-derivative polymer delivers a remarkable reversible capacity of 540 mAh g−1 at 50 mA g−1,good rate capability,and cycling stability for sodium-ion batteries.This study holds great potential of the design of new complex bio-materials with supramolecular chemistry.
基金This work was financially supported by the Natural Science Foundation of China(Grant No.51773062,61831021,51872283,21805273,22075279,22005297,22005298)the China Postdoctoral Science Foundation(Project No.2019M661421)+9 种基金the National Key R@D Program of China(Grants 2016YBF0100100,2016YFA0200200)the Liaoning BaiQianWan Talents Program,Liaoning Revitalization Talents Program(Grant XLYC1807153)the Natural Science Foundation of Liaoning Province,Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science(Grant 20180510038)the Dalian Innovation Support Plan for High Level Talents(2019RT09)DICP(DICP ZZBS201708,DICP ZZBS201802,and DICP 1202032)the DICP&QIBEBT(Grant DICP&QjBEBT UN201702)the Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(DNL180310,DNL180308,DNL201912,and DNL201915)We thank Yucen Li and Prof.Ming Hu(East China Normal University,China)for the kind help in nitrogen absorption-desorption isotherms measurementalso thank the Material structure analysis center and Multifunctional Platform for Innovation of East China Normal University(003,004,006)the Center for Advanced Electronic Materials and Devices(AEMD)of Shanghai Jiao Tong University.
文摘Rational design and precise regulation over the morphology, structure, and pore size of functional conducting mesoporous polymers with enriched active sites and shorten electron–ion transport pathway are extremely important for developing high-performance micro-supercapacitors (MSCs), but still remain a great challenge. Herein, a general dual-colloid interface co-assembly strategy is proposed to fabricate hollow mesoporous polypyrrole nano-bowls (mPPy-nbs) for high-energy-density solid-state planar MSCs. By simply adjusting the size of block copolymer micelles, the diameter of polystyrene nanospheres and the amount of pyrrole monomer, mesopore size of the shell, void and shell thickness of mPPy-nbs can be simultaneously controlled. Importantly, this strategy can be further utilized to synthesize other hollow mesoporous polymers, including poly(tris(4-aminophenyl)amine), poly(1,3,5-triaminobenzene) and their copolymers, demonstrative of excellent universality. The structurally optimized mPPy-nb exhibits high specific surface area of 122 m^(2) g^(−1)and large capacitance of 225 F g^(−1) at 1 mV s^(−1). Furthermore, the MSCs assembled by mPPy-nbs deliver impressive volumetric capacitance of 90 F cm^(−3) and energy density of 2.0 mWh cm^(−3), superior to the most reported polymers-based MSCs. Also, the fabricated MSCs present excellent flexibility with almost no capacitance decay under varying bending states, and robust serial/parallel self-integration for boosting voltage and capacitance output. Therefore, this work will inspire the new design of mesoporous conducting polymer materials toward high-performance microscale supercapacitive devices.
文摘Terahertz (THz) transmission simulations play an important role in THz technology researches, especially for the structural design of a THz waveguide. Ray model takes into account both structure parameter of waveguide and the divergence angle of beam light and could be an alternative way for THz transmission behavior simulations. In this paper, the ray model is used to calculate the transmission loss of tube waveguide, and the simulated transmission losses are presented to compare with the results calculated by COMSOL. The suitable THz frequency range of ray model is discussed by analyzing the transmission loss spectra of tube waveguides with various core sizes. The credibility of ray model on terahertz transmission simulations is demonstrated based on the experimental results tested by THz-TDS and calculated results.
基金supported by the National Natural Science Foundation of China(61831021,51773062)。
文摘Mesoporous polymers combine the advantages of polymer materials(abundant polar functional groups,lightweight,flexibility,and processability)and mesoporous structures(high specific surface area,adjustable pore structure,and large pore volume);hence,they have great application potential in sensing,adsorption,catalysis,energy storage,biomedicine,etc.Currently,developing advanced synthetic strategies for mesoporous polymers and investigating their intrinsic applications have become hot research topics.Soft-template-based self-assembly is regarded as a promising approach for synthesizing mesoporous polymers.This work reviews recent progress in the synthetic strategy for producing various mesoporous polymers using soft-template selfassembly,focusing on the synthesis of conductive polymers,phenol-based polymers,and resin-based polymers and their potential applications.Finally,perspectives on future applications of mesoporous polymers,along with a few challenges that need to be resolved,are also discussed in this review.
基金supported by the National Natural Science Foundation of China(52373208,61831021)。
文摘Benefiting from abundant exposed active sites,minimized diffusion resistance of guest molecules,facilitated mass transfer process and enhanced storage capacity,covalent organic frameworks(COFs)have gained widespread scientific attention[1–4].Further construction of mesopores regarding pore engineering(pore size,pore geometry,pore volume,and framework compositions)in COFs can improve mass transport,accessibility as well as size-selectivity of the special guest moieties,thus exhibiting potential in catalysis,energy storage and separation and so on[5,6].
基金supported by the National Natural Science Foundation of China(Nos.61775060,61275100,61761136006,61790583,and 61874043).
文摘The poor stability of halide perovskite nanocrystals(NCs)has severely hindered future practical application.Herein,we proposed a facile and effective ligand modification route to synthesize stable CsPbBr_(3) nanocrystals by introducing a double-terminal ligand,namely 4,4'-Azobis(4-cyanovalericacid)(CA),to replace the conventional oleic acid(OA)ligand at room temperature.The as-synthesized CsPbBr_(3)-CA not only possesses high photoluminescence quantum yield(72%)related to the reduced trap defects,but also shows significantly improved stability exposure to water,ethanol,light,and/or heat benefiting from the CA ligand anchored to NC surfaces tightly.The photoluminescence intensity of CsPbBr_(3)-CA maintains about 80%and 75%of its initial emission intensity after immersed in water or ethanol for 360 min,respectively,whereas that of the CsPbBr_(3)-OA was quenched completely within a few minutes.Moreover,an all-inorganic white light-emitting diode(LED)covered 126%National Television System Committee(NTSC)standard and 92%Rec.2020 standard was fabricated by combining the green CsPbBr_(3)-CA and commercial red-emitting K2SiF6:Mn4+(KSF)phosphors onto a blue LED chip.Thus,the presented work initiates the development of the room temperature preparation of high quality CsPbBr_(3) and shows prospect for next-generation displays.
基金supported by the research programs from the National Natural Science Foundation of China(Nos.51773062 and 61831021)。
文摘Two-dimensional mesoporous materials combing ultrathin nanosheet morphology with well-defined mesoporous structures,are now emerging and becoming increasingly important for their promising applications in energy storage,electronic devices,electrocatalysts and so on.Here,we synthesized a kind of polypyrrole-based two-dimensional mesoporous materials with uniform pore size,ultrathin thickness and high surface area.Serving for electrochemical NH3 sensor,they exhibited a fast response and high sensitivity.Therefore,our study would promote much interest in design of new materials for gas sensor applications.