A new technique IMS (Incremental Melting and Solidification Process) has been introduced. A kind of cast steel high Mn foundry alloy gradient rnalerial was produced by this process. The microstructure and mechanical ...A new technique IMS (Incremental Melting and Solidification Process) has been introduced. A kind of cast steel high Mn foundry alloy gradient rnalerial was produced by this process. The microstructure and mechanical properties of the alloy were tested. Fe and Mn in the samples were measured by EPMA. The experimental results show that the content and hardness of Fe-Mn alloy vary continuously and the IMS process is an alternative way in producing metal matrix gradient material. It is possible for these materials to be made into some parts such as camshaft.展开更多
The mixture of Fe and Al powder was mechanically activated and sintered to study a non-melting methodof producing the intermetallics Fe3Al. High-energy ball milling was used as an activation method, X-ray diffractiona...The mixture of Fe and Al powder was mechanically activated and sintered to study a non-melting methodof producing the intermetallics Fe3Al. High-energy ball milling was used as an activation method, X-ray diffractionand SEM were chosen to analyze the materials variation before and after activation and sintering, and hot press ofFe-Al powder was inveshgated to compare mechanical activation with sintering. The results show that combiningmechanical activation with reaction sintering can complete the transformation from pure Fe and Al powder to intermetallics. It is difficult to do the transformation by either mechanical activation or hot press.展开更多
Stainless steel samples were made by Powder injection Molding (PIM) process with-400 mesh powder in order to investigate the sintering mechanism in this system and develop the PIM of stainless steels. The process incl...Stainless steel samples were made by Powder injection Molding (PIM) process with-400 mesh powder in order to investigate the sintering mechanism in this system and develop the PIM of stainless steels. The process included mixing, injection molding, debin- ding and sintering. Neck growth model was used to analyze the sintering mechanism. The results show that lattice (volume) diffusion is the main mechanism in the sintering process, the products with higher density (>95%) and properties are obtained. At lower temperatures, grain boundary diffusion may play a role in the sintering densification.展开更多
The phase equilibria between γ, α, γ' and β in the Ni-rich region of the Ni-Al-Fe system were investigated by the diffusion couple method and thermodynamic models. The thermodynamic parameters were assessed ba...The phase equilibria between γ, α, γ' and β in the Ni-rich region of the Ni-Al-Fe system were investigated by the diffusion couple method and thermodynamic models. The thermodynamic parameters were assessed based on experimental results and thermodynamic data. Moreover, the system's phase equilibria from 900 to 1 300℃ were calculated with regular solution and sublattice models, and it is shown that the theoretic results agree well with experimental phase diagram data.展开更多
Two kinds of Cu-Al_2O_3 composites(with and without La) were prepared via mechanical alloying-spark plasma sintering(MA-SPS) method. Microstructure, mechanical properties and electrical resistivity were investigated s...Two kinds of Cu-Al_2O_3 composites(with and without La) were prepared via mechanical alloying-spark plasma sintering(MA-SPS) method. Microstructure, mechanical properties and electrical resistivity were investigated systematically using metallography, scanning electron microscopy, transmission electron microscopy, mechanical and electrical properties testing. The results indicate that an appropriate amount of La can homogenize the distribution of Al_2O_3. As such, yield strength, ultimate tensile strength and elongation of Cu-Al_2O_3-La are greatly increased. Some semi-coherent interface between Cu and Al_2O_3 is found, which means a low interface energy. The grain shape of Cu changes to irregular band with the addition of La. This change results in a density decrease of grain boundary and reduces electrical resistance. Lanthanum may exist in the form of La_2O_3.展开更多
Carbon nanotube reinforced bioglass composites have been successfully synthesized by two comparative sintering techniques, i.e., spark plasma sintering (SPS) and conventional compaction and sinteirng. The composites...Carbon nanotube reinforced bioglass composites have been successfully synthesized by two comparative sintering techniques, i.e., spark plasma sintering (SPS) and conventional compaction and sinteirng. The composites show improved mechanical properties, with SPS technique substantially better than conventional compact and sintering approach. Using SPS, compared with the 45S5Bioglass matrix, the maximum flexural strength and fracture toughness increased by 159% and 105%, respectively. Enhanced strength and toughness are attributed to the interfacial bonding and bridging effects between the carbon nanotubes and bioglass powders during crack propagations.展开更多
文摘A new technique IMS (Incremental Melting and Solidification Process) has been introduced. A kind of cast steel high Mn foundry alloy gradient rnalerial was produced by this process. The microstructure and mechanical properties of the alloy were tested. Fe and Mn in the samples were measured by EPMA. The experimental results show that the content and hardness of Fe-Mn alloy vary continuously and the IMS process is an alternative way in producing metal matrix gradient material. It is possible for these materials to be made into some parts such as camshaft.
文摘The mixture of Fe and Al powder was mechanically activated and sintered to study a non-melting methodof producing the intermetallics Fe3Al. High-energy ball milling was used as an activation method, X-ray diffractionand SEM were chosen to analyze the materials variation before and after activation and sintering, and hot press ofFe-Al powder was inveshgated to compare mechanical activation with sintering. The results show that combiningmechanical activation with reaction sintering can complete the transformation from pure Fe and Al powder to intermetallics. It is difficult to do the transformation by either mechanical activation or hot press.
文摘Stainless steel samples were made by Powder injection Molding (PIM) process with-400 mesh powder in order to investigate the sintering mechanism in this system and develop the PIM of stainless steels. The process included mixing, injection molding, debin- ding and sintering. Neck growth model was used to analyze the sintering mechanism. The results show that lattice (volume) diffusion is the main mechanism in the sintering process, the products with higher density (>95%) and properties are obtained. At lower temperatures, grain boundary diffusion may play a role in the sintering densification.
文摘The phase equilibria between γ, α, γ' and β in the Ni-rich region of the Ni-Al-Fe system were investigated by the diffusion couple method and thermodynamic models. The thermodynamic parameters were assessed based on experimental results and thermodynamic data. Moreover, the system's phase equilibria from 900 to 1 300℃ were calculated with regular solution and sublattice models, and it is shown that the theoretic results agree well with experimental phase diagram data.
基金Project supported by the National Natural Science Foundation of China(51471023,51571021,11775018)the Beijing Municipal Natural Science Foundation(2152031)
文摘Two kinds of Cu-Al_2O_3 composites(with and without La) were prepared via mechanical alloying-spark plasma sintering(MA-SPS) method. Microstructure, mechanical properties and electrical resistivity were investigated systematically using metallography, scanning electron microscopy, transmission electron microscopy, mechanical and electrical properties testing. The results indicate that an appropriate amount of La can homogenize the distribution of Al_2O_3. As such, yield strength, ultimate tensile strength and elongation of Cu-Al_2O_3-La are greatly increased. Some semi-coherent interface between Cu and Al_2O_3 is found, which means a low interface energy. The grain shape of Cu changes to irregular band with the addition of La. This change results in a density decrease of grain boundary and reduces electrical resistance. Lanthanum may exist in the form of La_2O_3.
文摘Carbon nanotube reinforced bioglass composites have been successfully synthesized by two comparative sintering techniques, i.e., spark plasma sintering (SPS) and conventional compaction and sinteirng. The composites show improved mechanical properties, with SPS technique substantially better than conventional compact and sintering approach. Using SPS, compared with the 45S5Bioglass matrix, the maximum flexural strength and fracture toughness increased by 159% and 105%, respectively. Enhanced strength and toughness are attributed to the interfacial bonding and bridging effects between the carbon nanotubes and bioglass powders during crack propagations.