In the research,the dynamic fracture failure problem of functionally graded materials(FGMs)containing two pre-cracks was analyzed using a bond-based Peridynamic(PD)method numerical model.The two convergence of decreas...In the research,the dynamic fracture failure problem of functionally graded materials(FGMs)containing two pre-cracks was analyzed using a bond-based Peridynamic(PD)method numerical model.The two convergence of decreasing the area of PD horizon(δ-convergence)and uniform mesh refinement(m-convergence)were studied.The effects of both crack position and distance between two cracks on crack propagation pattern in FGMs plate under tensile loads are studied.Furthermore,the effects of different gradient patterns on the dynamic propagation of cracks in FGMs are also investigated.The simulate results suggest that the cracks positions and the distance between them can significantly influence the dynamic propagation of crack in FGMs.Gradient mode also has a certain effect on crack propagation,but the effect of specific gradient variation patterns on dynamic propagation of crack is finite.展开更多
In this paper,a semi-discrete model based on peridynamics(PD)for engineered cementitious composites(ECCs)is applied to simulate the fracture behavior of functionally graded ECC(FGECC)beams.This is a new application of...In this paper,a semi-discrete model based on peridynamics(PD)for engineered cementitious composites(ECCs)is applied to simulate the fracture behavior of functionally graded ECC(FGECC)beams.This is a new application of PD in ECC.Prior to simulating the crack behavior,the convergence of the PD model for ECC is discussed and the appropriate horizon size 5 and nonlocal ratio m are obtained,i.e.,S=1.6 mm and m=4.In addition,when the bond strain exceeds the elastic limit,a damage variable is introduced into the model,and the model is validated using a simple numerical algorithm.Finally,the dynamic fracture behavior of a two-dimensional FGECC beam under four-point bending is investigated,and the effect of the initial crack location on the fracture behavior is analyzed.Simulation results show that the initial crack location can affect the crack propagation pattern,thereby enabling one to understand the dynamic fracture behavior of ECC structures and guide the engineering practice.展开更多
In this paper,a peridynamic model for simulating the dynamic fracture in layered engineered cementitious composites(LECC)is applied.The model takes into account the location information of the fibers as well as the di...In this paper,a peridynamic model for simulating the dynamic fracture in layered engineered cementitious composites(LECC)is applied.The model takes into account the location information of the fibers as well as the distribution form.In addition,numerical simulations of LECC beams under four-point bending are carried out.The effects of notch size and fiber volume fraction are investigated.The numerical results show that the notch size and gradient distribution of fiber volume fraction affect the crack propagation pattern,which can help to understand the dynamic fracture behavior of engineered cementitious composites.展开更多
基金the Natural Science Foundation of China(Nos.11472248,11872339)the Natural Science Foundation of Henan Province(No.182300410221).
文摘In the research,the dynamic fracture failure problem of functionally graded materials(FGMs)containing two pre-cracks was analyzed using a bond-based Peridynamic(PD)method numerical model.The two convergence of decreasing the area of PD horizon(δ-convergence)and uniform mesh refinement(m-convergence)were studied.The effects of both crack position and distance between two cracks on crack propagation pattern in FGMs plate under tensile loads are studied.Furthermore,the effects of different gradient patterns on the dynamic propagation of cracks in FGMs are also investigated.The simulate results suggest that the cracks positions and the distance between them can significantly influence the dynamic propagation of crack in FGMs.Gradient mode also has a certain effect on crack propagation,but the effect of specific gradient variation patterns on dynamic propagation of crack is finite.
基金the Natural Science Foundation of China(Nos.11872339,11472248)the Natural Science Foundation of Henan Province(No.182300410221).
文摘In this paper,a semi-discrete model based on peridynamics(PD)for engineered cementitious composites(ECCs)is applied to simulate the fracture behavior of functionally graded ECC(FGECC)beams.This is a new application of PD in ECC.Prior to simulating the crack behavior,the convergence of the PD model for ECC is discussed and the appropriate horizon size 5 and nonlocal ratio m are obtained,i.e.,S=1.6 mm and m=4.In addition,when the bond strain exceeds the elastic limit,a damage variable is introduced into the model,and the model is validated using a simple numerical algorithm.Finally,the dynamic fracture behavior of a two-dimensional FGECC beam under four-point bending is investigated,and the effect of the initial crack location on the fracture behavior is analyzed.Simulation results show that the initial crack location can affect the crack propagation pattern,thereby enabling one to understand the dynamic fracture behavior of ECC structures and guide the engineering practice.
基金supported by the National Natural Science Foundation of China(Nos.11872339,11472248)the Natural Science Foundation of Henan Province(No.182300410221).
文摘In this paper,a peridynamic model for simulating the dynamic fracture in layered engineered cementitious composites(LECC)is applied.The model takes into account the location information of the fibers as well as the distribution form.In addition,numerical simulations of LECC beams under four-point bending are carried out.The effects of notch size and fiber volume fraction are investigated.The numerical results show that the notch size and gradient distribution of fiber volume fraction affect the crack propagation pattern,which can help to understand the dynamic fracture behavior of engineered cementitious composites.