This paper deals with the numerical computation and analysis for Caputo fractional differential equations(CFDEs).By combining the p-order boundary value methods(B-VMs)and the m-th Lagrange interpolation,a type of exte...This paper deals with the numerical computation and analysis for Caputo fractional differential equations(CFDEs).By combining the p-order boundary value methods(B-VMs)and the m-th Lagrange interpolation,a type of extended BVMs for the CFDEs with y-order(0<r<1)Caputo derivatives are derived.The local stability,unique solvability and convergence of the methods are studied.It is proved under the suitable conditions that the convergence order of the numerical solutions can arrive at min{p,m-γ+1}.In the end,by performing several numerical examples,the computational efficiency,accuracy and comparability of the methods are further ilustrated.展开更多
基金The authors would like to thank the anonymous referees for their valuable comments and helpful suggestions.The second author Chengian Zhang(corresponding author)is supported by NSFC(Grant No.11971010).
文摘This paper deals with the numerical computation and analysis for Caputo fractional differential equations(CFDEs).By combining the p-order boundary value methods(B-VMs)and the m-th Lagrange interpolation,a type of extended BVMs for the CFDEs with y-order(0<r<1)Caputo derivatives are derived.The local stability,unique solvability and convergence of the methods are studied.It is proved under the suitable conditions that the convergence order of the numerical solutions can arrive at min{p,m-γ+1}.In the end,by performing several numerical examples,the computational efficiency,accuracy and comparability of the methods are further ilustrated.