期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Bilayered nanosheets used for complex topography wound anti‑infection 被引量:1
1
作者 chengkai xuan Xuemin Liu +1 位作者 Chen Lai Xuetao Shi 《Bio-Design and Manufacturing》 SCIE CSCD 2020年第4期373-382,共10页
There is a consensus that the prevention of wound infection should be achieved in the following ways:(1)closing the wound to protect it from extra infection;(2)an antibacterial agent that could kill endogenous bacteri... There is a consensus that the prevention of wound infection should be achieved in the following ways:(1)closing the wound to protect it from extra infection;(2)an antibacterial agent that could kill endogenous bacteria.However,existing bulk two-dimensional antibacterial materials show inefficient adhesion to wounds with complex morphology and thus cause the prevention of wound closure.Reducing the thickness of bulk two-dimensional materials to less than 100 nanometres endows them with great flexibility,which could allow them to adhere to wounds with complex morphology by only physical adhesion.Herein,a broad-spectrum and efficient antimicrobial peptide(AMP)was introduced to biocompatible methacrylated gelatine(GelMA)with multiple modification sites,which served as an inner antibacterial layer.After being combined with a biodegradable and good mechanical poly-l-lactide(PLLA)outer layer through plasma-treatment-assisted spin coating,we finally constructed bilayered antibacterial nanosheets with a thickness of approximately 80 nm.These bilayered nanosheets possess good adhesion to surfaces with complex topography and thus achieve better wound closure than other bulk two-dimensional materials.Moreover,this AMP-grafted conjugation shows minimal cytotoxicity compared with Ag^+antibacterial agents,and the antibacterial rate of nanosheets is dependent on the graft rate of AMP.We suggest that this bilayered antibacterial nanosheet might be an advanced anti-infection dressing for wound treatment in clinical settings. 展开更多
关键词 NANOSHEET Adhesive Complicated topography ANTIMICROBIAL
下载PDF
Generation of microfluidic gradients and their effects on cells behaviours
2
作者 Qiangqiang Tang Xiran Yang +3 位作者 chengkai xuan Kai Wu Chen Lai Xuetao Shi 《Bio-Design and Manufacturing》 SCIE CSCD 2020年第4期427-431,共5页
Introduction The concept of“gradients”has been widely demonstrated and applicated in biology.For example,concentration gradients and potential gradients in the body can regulate the homeostasis as well as the balanc... Introduction The concept of“gradients”has been widely demonstrated and applicated in biology.For example,concentration gradients and potential gradients in the body can regulate the homeostasis as well as the balance of physiological environment;oxygen gradients play a vital role in cellular gene expression and migration. 展开更多
关键词 migration. HOMEOSTASIS FLUID
下载PDF
A sandwiched patch toward leakage-free and anti-postoperative tissue adhesion sealing of intestinal injuries 被引量:1
3
作者 Wei Yang chengkai xuan +4 位作者 Xuemin Liu Qiang Zhang Kai Wu Liming Bian Xuetao Shi 《Bioactive Materials》 SCIE CSCD 2023年第6期112-123,共12页
Ideal repair of intestinal injury requires a combination of leakage-free sealing and postoperative antiadhesion.However,neither conventional hand-sewn closures nor existing bioglues/patches can achieve such a combinat... Ideal repair of intestinal injury requires a combination of leakage-free sealing and postoperative antiadhesion.However,neither conventional hand-sewn closures nor existing bioglues/patches can achieve such a combination.To this end,we develop a sandwiched patch composed of an inner adhesive and an outer antiadhesive layer that are topologically linked together through a reinforced interlayer.The inner adhesive layer tightly and instantly adheres to the wound sites via-NHS chemistry;the outer antiadhesive layer can inhibit cell and protein fouling based on the zwitterion structure;and the interlayer enhances the bulk resilience of the patch under excessive deformation.This complementary trilayer patch(TLP)possesses a unique combination of instant wet adhesion,high mechanical strength,and biological inertness.Both rat and pig models demonstrate that the sandwiched TLP can effectively seal intestinal injuries and inhibit undesired postoperative tissue adhesion.The study provides valuable insight into the design of multifunctional bioadhesives to enhance the treatment efficacy of intestinal injuries. 展开更多
关键词 Trilayer patch Bioadhesives Preventing postoperative adhesion ANTIADHESION Intestinal injuries
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部