The effective proliferation and differentiation of trophoblast stem cells(TSCs)is indispensable for the development of the placenta,which is the key to maintaining normal fetal growth during pregnancy.Kruppel-like fac...The effective proliferation and differentiation of trophoblast stem cells(TSCs)is indispensable for the development of the placenta,which is the key to maintaining normal fetal growth during pregnancy.Kruppel-like factor 5(Klf5)is implicated in the activation of pluripotency gene expression in embryonic stem cells(ESCs),yet its function in TSCs is poorly understood.Here,we showed that Klf5 knockdown resulted in the downregulation of core TSC-specific genes,consequently causing rapid differentiation of TSCs.Consistently,Klf5-depleted embryos lost the ability to establish TSCs in vitro.At the molecular level,Klf5 preferentially occupied the proximal promoter regions and maintained an open chromatin architecture of key TSC-specific genes.Deprivation of Klf5 impaired the enrichment of p300,a major histone acetyl transferase of H3 lysine 27 acetylation(H3K27ac),and further reduced the occupancy of H3K27ac at promoter regions,leading to decreased transcriptional activity of TSC pluripotency genes.Thus,our findings highlight a novel mechanism of Klf5 in regulating the self-renewal and differentiation of TSCs and provide a reference for understanding placental development and improving pregnancy rates.展开更多
基金This work was supported by the National Natural.Science Foundation of China(31970822 and 31902161)the Key Research and Development Program of Hubei Province(2021BBA221 and 2022BCE002)+1 种基金the Fundamental Research Funds for the Central Universities(2662022DKPY001)the Major Project of Hubei Hongshan Laboratory(2021hszdo03)。
文摘The effective proliferation and differentiation of trophoblast stem cells(TSCs)is indispensable for the development of the placenta,which is the key to maintaining normal fetal growth during pregnancy.Kruppel-like factor 5(Klf5)is implicated in the activation of pluripotency gene expression in embryonic stem cells(ESCs),yet its function in TSCs is poorly understood.Here,we showed that Klf5 knockdown resulted in the downregulation of core TSC-specific genes,consequently causing rapid differentiation of TSCs.Consistently,Klf5-depleted embryos lost the ability to establish TSCs in vitro.At the molecular level,Klf5 preferentially occupied the proximal promoter regions and maintained an open chromatin architecture of key TSC-specific genes.Deprivation of Klf5 impaired the enrichment of p300,a major histone acetyl transferase of H3 lysine 27 acetylation(H3K27ac),and further reduced the occupancy of H3K27ac at promoter regions,leading to decreased transcriptional activity of TSC pluripotency genes.Thus,our findings highlight a novel mechanism of Klf5 in regulating the self-renewal and differentiation of TSCs and provide a reference for understanding placental development and improving pregnancy rates.