In this paper, a new decision making approach is proposed for the multi-attribute large group emergency decision-making problem that attribute weights are unknown and expert preference information is expressed by gene...In this paper, a new decision making approach is proposed for the multi-attribute large group emergency decision-making problem that attribute weights are unknown and expert preference information is expressed by generalized interval-valued trapezoidal fuzzy numbers (GITFNs). Firstly, a degree of similarity formula between GITFNs is presented. Secondly, expert preference information on different alternatives is clustered into several aggregations via the fuzzy clustering method. As the clustering proceeds, an index of group preference consistency is introduced to ensure the clustering effect, and then the group preference information on different alternatives is obtained. Thirdly, the TOPSIS method is used to rank the alternatives. Finally, an example is taken to show the feasibility and effectiveness of this approach. These method can ensure the consistency degree of group preference, thus decision efficiency of emergency response activities can be improved.展开更多
基金supported by a grant from Natural Science Foundation in China(71171202, 71171201,71210003)the Science Foundation for National Innovation Research Group in China(71221061)Key Project for National Natural Science Foundation in China (71431006)
文摘In this paper, a new decision making approach is proposed for the multi-attribute large group emergency decision-making problem that attribute weights are unknown and expert preference information is expressed by generalized interval-valued trapezoidal fuzzy numbers (GITFNs). Firstly, a degree of similarity formula between GITFNs is presented. Secondly, expert preference information on different alternatives is clustered into several aggregations via the fuzzy clustering method. As the clustering proceeds, an index of group preference consistency is introduced to ensure the clustering effect, and then the group preference information on different alternatives is obtained. Thirdly, the TOPSIS method is used to rank the alternatives. Finally, an example is taken to show the feasibility and effectiveness of this approach. These method can ensure the consistency degree of group preference, thus decision efficiency of emergency response activities can be improved.