Activatable fluorescence nanoprobes with only one kind of nanomaterial that can act as both the energy donor and acceptor simultaneously are scarce, but highly desirable for biosensing and bioimaging. In the present s...Activatable fluorescence nanoprobes with only one kind of nanomaterial that can act as both the energy donor and acceptor simultaneously are scarce, but highly desirable for biosensing and bioimaging. In the present study, we reveal the preparation of self-quenched gold nanoclusters as a simple fluorescent turn-on probe for imaging intraceUular glutathione. The self-quenched gold nanoclusters are prepared via disulfide bond-induced aggregation of gold nanodusters. Compared with monodisperse gold nanoclusters, the developed self-quenched gold nanoclusters exhibit weak emission at 735 nm with a 40-nm red shift and much lower quantum yield (0.69%). The prepared self-quenched gold nanodusters also possess good sensitivity and selectivity for glutathione detection, and are applicable for fluorescent turn-on imaging of intracellular glutathione.展开更多
基金This work was supported by the National Natural Science Foundation of China (NSFC) (No. 21435001), the Fundamental Research Funds for Central Universities (No. JUSRP51714B), and the Open Funds of the State Key Laboratory of Electroanalytical Chemistry (No. SKLEAC201705).
文摘Activatable fluorescence nanoprobes with only one kind of nanomaterial that can act as both the energy donor and acceptor simultaneously are scarce, but highly desirable for biosensing and bioimaging. In the present study, we reveal the preparation of self-quenched gold nanoclusters as a simple fluorescent turn-on probe for imaging intraceUular glutathione. The self-quenched gold nanoclusters are prepared via disulfide bond-induced aggregation of gold nanodusters. Compared with monodisperse gold nanoclusters, the developed self-quenched gold nanoclusters exhibit weak emission at 735 nm with a 40-nm red shift and much lower quantum yield (0.69%). The prepared self-quenched gold nanodusters also possess good sensitivity and selectivity for glutathione detection, and are applicable for fluorescent turn-on imaging of intracellular glutathione.