期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Residual oil evolution based on displacement characteristic curve 被引量:3
1
作者 Duanchuan Lyu chengyan lin +2 位作者 Lihua Ren Chunmei Dong Jinpeng Song 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第3期337-343,共7页
The purpose of this study was to determine the displacement and dynamic distribution characteristics of the remaining oil in the two development stages of water flooding and subsequent alkaline surfactant polymer(ASP)... The purpose of this study was to determine the displacement and dynamic distribution characteristics of the remaining oil in the two development stages of water flooding and subsequent alkaline surfactant polymer(ASP) flooding. The well pattern types in the water and ASP flooding stages are a longdistance determinant well pattern and short-distance five-point well pattern, respectively. The type A displacement characteristic curve can be obtained using the production data, and the slope of the straight-line section of the curve can reflect the displacement strength of the oil displacement agent. A numerical simulation was carried out based on the geological model. The results revealed that the injected water advances steadily with a large-distance determinant water-flooding well pattern. The single-well water production rate increases monotonically during water flooding. There is a significant positive correlation between the cumulative water-oil ratio and the formation parameter. Differential seepage between the oil and water phases is the main factor causing residual oil formation after water flooding, while the residual oil is still relatively concentrated. The effect of the chemical oildisplacement agent on improving the oil-water two-phase seepage flow has distinct stages during ASP flooding. The remaining oil production is extremely sporadic after ASP flooding. 展开更多
关键词 Water flooding ASP flooding Water-drive characteristic curve Residue oil Thick oil layer
下载PDF
3D geocellular modeling for reservoir characterization of lacustrine turbidite reservoirs:Submember 3 of the third member of the Eocene Shahejie Formation,Dongying depression,Eastern China
2
作者 Marco Shaban Lutome chengyan lin +2 位作者 Dong Chunmei Xianguo Zhang Januarius Matata Bishanga 《Petroleum Research》 2022年第1期47-61,共15页
3D geocellular modeling is increasingly essential in the petroleum industry;it brings together all petroleum disciplines,and it is commonly used in simulation and production forecast.However,modeling slope and deep-wa... 3D geocellular modeling is increasingly essential in the petroleum industry;it brings together all petroleum disciplines,and it is commonly used in simulation and production forecast.However,modeling slope and deep-water turbidite reservoirs using conventional modeling methods pose a significant challenge due to the structural complexity and thin-beds associated with these reservoirs.Through the innovative modeling technology of PaleoScan,the reservoirs in Sub member 3 of the third member of the Shahejie Formation are modeled to understand the structural framework.The resulting model is populated with petrophysical properties i.e.,porosity and permeability to predict their lateral and vertical distribution within these sandstone reservoirs.The study suggests that the reservoir in the highstand system tract(HST)is characterized by the clinoforms configuration framework.The reservoir is highly faulted mainly in the northern and southeastern parts of the depression.The sedimentary layers are deposited across the slope and downlapping,thinning,and terminating toward to the west.The two isochore surface maps reveal sediment thickness variation and depositional trends within each individual depositional layer.The zones or areas that corresponds to low values on the thickness maps suggest minor uplifts associated with intensive faulting in the Eocene period.These topographical highs played a fundamental role in distributing the sediments delivered to the basin from distant sources.The maps reveal that sediments that filled the basin appear to come from different source points,primarily delivered from the north,southeast,and northeast of the basin with varying depositional trends.The modeled porosity and permeability indicate that the delta fed turbidite reservoirs are characterized by medium to high porosity values of 10e20%and low to medium permeability values of 30-410mD,respectively.The porosity values increase to the southeast and toward the basinwards(west)while permeability varies within the individual sedimentary layers.The distribution of porosity and permeability is not uniform vertically.This suggests the presence of mixed none-reservoir layers with locally and periodically deposited sandstone reservoirs within the stratigraphic during rapid delta progradation.The HST is characterized by six different delta progradation cycles;each phase produced locally deposited lacustrine turbidite sandstones in the basin,which are essential reservoirs in this Formation.The innovative PaleoScan interpretation technology has successfully created a high-resolution 3D reservoir model of this complex geology-such innovative technology is vital to similar complex geology globally. 展开更多
关键词 Geomodelling Geocellular modelling Dongying depression Property modelling Reservoir characterization Lacustrine turbidites
原文传递
Seismic Sedimentology Interpretation Method of Meandering Fluvial Reservoir:From Model to Real Data 被引量:8
3
作者 Tao Zhang Xianguo Zhang +2 位作者 chengyan lin Jingfeng Yu Shouxiu Zhang 《Journal of Earth Science》 SCIE CAS CSCD 2015年第4期598-606,共9页
Reservoir architecture of meandering river deposition is complex and traditional seismic facies interpretation method cannot characterize it when layer thickness is under seismic vertical reso- lution. In this study, ... Reservoir architecture of meandering river deposition is complex and traditional seismic facies interpretation method cannot characterize it when layer thickness is under seismic vertical reso- lution. In this study, a seismic sedimentology interpretation method and workflow for point bar char- acterization is built. Firstly, the influences of seismic frequency and sandstone thickness on seismic re- flection are analyzed by outcrop detection with ground penetrating radar (GPR) and seismic forward modeling. It is found that (1) sandstone thickness can influence seismic reflection of point bar architecture. With the increasing of sandstone thickness from 1/4 wavelength (λ) to λ/2, seismic reflection geometries various from ambiguous reflection, "V" type reflection to "X" type reflection; (2) seismic frequency can influence reservoirs' seismic reflection geometry. Seismic events follow inclined lateral aggradation surfaces, which is isochronic depositional boundaries, in high frequency seismic data while the events extend along lithologic surfaces, which are level, in low frequency data. Secondly, strata slice interpretation method for thin layer depositional characterization is discussed with seismic forward modeling. Lastly, a method and workflow based on the above study is built which includes seismic frequency analysis, 90° phasing, stratal slicing and integrated interpretation of slice and seismic profile. This method is used in real data study in Tiger shoal, the Gulf of Mexico. Two episodes of meandering fluvial deposition is recognized in the study layer. Sandstone of the lower unit, which is formed in low base level stage, distributes limited. Sandstone distribution dimension and channel sinuosity become larger in the upper layer, which is high base level deposition. 展开更多
关键词 point bar reservoir architecture seismic sedimentology stratal slice.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部