期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Impacts of Ice-Ocean Stress on the Subpolar Southern Ocean:Role of the Ocean Surface Current
1
作者 Yang WU Zhaomin WANG +1 位作者 chengyan liu Liangjun YAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期293-309,共17页
The mechanical influences involved in the interaction between the Antarctic sea ice and ocean surface current(OSC)on the subpolar Southern Ocean have been systematically investigated for the first time by conducting t... The mechanical influences involved in the interaction between the Antarctic sea ice and ocean surface current(OSC)on the subpolar Southern Ocean have been systematically investigated for the first time by conducting two simulations that include and exclude the OSC in the calculation of the ice-ocean stress(IOS), using an eddy-permitting coupled ocean-sea ice global model. By comparing the results of these two experiments, significant increases of 5%, 27%, and 24%, were found in the subpolar Southern Ocean when excluding the OSC in the IOS calculation for the ocean surface stress,upwelling, and downwelling, respectively. Excluding the OSC in the IOS calculation also visibly strengthens the total mechanical energy input to the OSC by about 16%, and increases the eddy kinetic energy and mean kinetic energy by about38% and 12%, respectively. Moreover, the response of the meridional overturning circulation in the Southern Ocean yields respective increases of about 16% and 15% for the upper and lower branches;and the subpolar gyres are also found to considerably intensify, by about 12%, 11%, and 11% in the Weddell Gyre, the Ross Gyre, and the Australian-Antarctic Gyre, respectively. The strengthened ocean circulations and Ekman pumping result in a warmer sea surface temperature(SST), and hence an incremental surface heat loss. The increased sea ice drift and warm SST lead to an expansion of the sea ice area and a reduction of sea ice volume. These results emphasize the importance of OSCs in the air-sea-ice interactions on the global ocean circulations and the mass balance of Antarctic ice shelves, and this component may become more significant as the rapid change of Antarctic sea ice. 展开更多
关键词 subpolar Southern Ocean Antarctic sea ice ice-ocean stress air-sea-ice-ocean interaction ocean surface current MITgcm-ECCO2
下载PDF
Evaluation of Arctic Sea Ice Drift and its Relationship with Near-surface Wind and Ocean Current in Nine CMIP6 Models from China 被引量:2
2
作者 Xiaoyong YU chengyan liu +3 位作者 Xiaocun WANG Jian CAO Jihai DONG Yu liu 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第6期903-926,共24页
The simulated Arctic sea ice drift and its relationship with the near-surface wind and surface ocean current during 1979-2014 in nine models from China that participated in the sixth phase of the Coupled Model Interco... The simulated Arctic sea ice drift and its relationship with the near-surface wind and surface ocean current during 1979-2014 in nine models from China that participated in the sixth phase of the Coupled Model Intercomparison Project(CMIP6)are examined by comparison with observational and reanalysis datasets.Most of the models reasonably represent the Beaufort Gyre(BG)and Transpolar Drift Stream(TDS)in the spatial patterns of their long-term mean sea ice drift,while the detailed location,extent,and strength of the BG and TDS vary among the models.About two-thirds of the models agree with the observation/reanalysis in the sense that the sea ice drift pattern is consistent with the near-surface wind pattern.About the same proportion of models shows that the sea ice drift pattern is consistent with the surface ocean current pattern.In the observation/reanalysis,however,the sea ice drift pattern does not match well with the surface ocean current pattern.All nine models missed the observational widespread sea ice drift speed acceleration across the Arctic.For the Arctic basin-wide spatial average,five of the nine models overestimate the Arctic long-term(1979-2014)mean sea ice drift speed in all months.Only FGOALS-g3 captures a significant sea ice drift speed increase from 1979 to 2014 both in spring and autumn.The increases are weaker than those in the observation.This evaluation helps assess the performance of the Arctic sea ice drift simulations in these CMIP6 models from China. 展开更多
关键词 Arctic sea ice sea ice drift CMIP6 model evaluation
下载PDF
Impacts of High-Frequency Atmospheric Forcing on Southern OceanCirculation and Antarctic Sea Ice 被引量:1
3
作者 Yang WU Zhaomin WANG +1 位作者 chengyan liu and Xia LIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第5期515-531,共17页
The relative contributions of atmospheric fluctuations on 6 h?2 d,2?8 d,and 8 d?1 month time scales to the changes in the air?sea fluxes,the SO circulation,and Antarctic sea ice are investigated.It was found that the ... The relative contributions of atmospheric fluctuations on 6 h?2 d,2?8 d,and 8 d?1 month time scales to the changes in the air?sea fluxes,the SO circulation,and Antarctic sea ice are investigated.It was found that the imposed forcing variability on the three time scales creates a significant increase in wind power input,and hence an increase of about 50%,97%,and 5%of eddy kinetic energy relative to the simulation driven by monthly forcing,respectively.Also,SO circulation and the strength of the upper cell of meridional overturning circulation become strengthened.These results indicate more dominant effects of atmospheric variability on the 2?8 d time scale on the SO circulation.Meanwhile,the 6 h?2 d(2?8 d)atmospheric variability causes an increase in the total sea-ice extent,area,and volume,by about 33%,30%,and 19%(17%,20%,and 25%),respectively,relative to those in the experiment forced by monthly atmospheric variables.Such significant sea-ice increases are caused by a cooler ocean surface and stronger sea-ice transports owing to the enhanced heat losses and air-ice stresses induced by the atmospheric variability at 6 h?2 d and 2?8 d,while the effects of the variability at 8 d?1 month are rather weak.The influences of atmospheric variability found here mainly result from wind fluctuations.Our findings in this study indicate the importance of properly resolving high-frequency atmospheric variability in modeling studies. 展开更多
关键词 HIGH-FREQUENCY atmospheric variability MOMENTUM FLUXES BUOYANCY FLUXES Southern Ocean circula tion ANTARCTIC sea ice MITgcm-ECCO2
下载PDF
On the Response of Subduction in the South Pacific to an Intensification of Westerlies and Heat Flux in an Eddy Permitting Ocean Model 被引量:5
4
作者 chengyan liu Zhaomin WANG +2 位作者 Bingrui LI Chen CHENG Ruibin XIA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第4期521-531,共11页
Based on an eddy permitting ocean general circulation model, the response of water masses to two distinct climate scenarios in the South Pacific is assessed in this paper. Under annually repeating atmospheric forcing ... Based on an eddy permitting ocean general circulation model, the response of water masses to two distinct climate scenarios in the South Pacific is assessed in this paper. Under annually repeating atmospheric forcing that is characterized by different westerlies and associated heat flux, the response of Subantarctic Mode Water(SAMW) and Antarctic Intermediate Water(AAIW) is quantitatively estimated. Both SAMW and AAIW are found to be warmer, saltier and denser under intensified westerlies and increased heat loss. The increase in the subduction volume of SAMW and AAIW is about 19.8 Sv(1 Sv =10-6m-3s-(-1)). The lateral induction term plays a dominant role in the changes in the subduction volume due to the deepening of the mixed layer depth(MLD). Furthermore, analysis of the buoyancy budget is used to quantitatively diagnose the reason for the changes in the MLD. The deepening of the MLD is found to be primarily caused by the strengthening of heat loss from the ocean to the atmosphere in the formation region of SAMW and AAIW. 展开更多
关键词 subduction mixed layer depth westerlies heat flux buoyance flux
下载PDF
Enhanced thermoelectric properties of p-type polycrystalline SnSe by regulating the anisotropic crystal growth and Sn vacancy 被引量:1
5
作者 刘呈燕 苗蕾 +6 位作者 王潇漾 伍少海 郑岩岩 邓梓阳 陈玉莲 王桂文 周小元 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第4期103-109,共7页
Thermoelectric selenides have attracted more and more attentions recently.Herein,p-type Sn Se polycrystalline bulk materials with good thermoelectric properties are presented.By using the SnSe2 nanostructures synthesi... Thermoelectric selenides have attracted more and more attentions recently.Herein,p-type Sn Se polycrystalline bulk materials with good thermoelectric properties are presented.By using the SnSe2 nanostructures synthesized via a wetchemistry route as the precursor,polycrystalline Sn Se bulk materials were successfully obtained by a combined heattreating process under reducing atmosphere and following spark plasma sintering procedure.As a reference,the Sn Se nanostructures synthesized via a wet-chemistry route were also fabricated into polycrystalline bulk materials through the same process.The thermoelectric properties of the Sn Se polycrystalline transformed from SnSe2 nanostructures indicate that the increasing of heattreating temperature could effectively decrease the electrical resistivity,whereas the decrease in Seebeck coefficient is nearly invisible.As a result,the maximum power factor is enhanced from 5.06×10^-4W/m·K^2 to 8.08×10^-4W/m·K^2 at 612℃.On the other hand,the reference sample,which was obtained by using Sn Se nanostructures as the precursor,displays very poor power factor of only 1.30×10^-4W/m·K^2 at 537℃.The x-ray diffraction(XRD),scanning electron microscope(SEM),x-ray fluorescence(XRF),and Hall effect characterizations suggest that the anisotropic crystal growth and existing Sn vacancy might be responsible for the enhanced electrical transport in the polycrystalline Sn Se prepared by using SnSe2 precursor.On the other hand,the impact of heat-treating temperature on thermal conductivity is not obvious.Owing to the boosting of power factor,a high z T value of 1.07 at 612℃ is achieved.This study provides a new method to synthesize polycrystalline Sn Se and pave a way to improve the thermoelectric properties of polycrystalline bulk materials with similar layered structure. 展开更多
关键词 thermoelectric properties SnSe2 nanostructures polycrystalline SnSe anisotropic crystal growth
下载PDF
Thermoelectric enhancement of p-type Si_(80)Ge_(20) alloy via co-compositing of dual oxides:Respective regulation for power factor and thermal conductivity byβ-Ga_(2)O_(3) and SiO_(2) aerogel powders 被引量:1
6
作者 Huajun LAI Ying PENG +6 位作者 Mengfei WANG Runze SHI Junliang CHEN chengyan liu Yifeng WANG Lei MIAO Haiqiao WEI 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第2期228-241,共14页
Si-based thermoelectric(TE)materials are exhibiting remarkable perspectives in self-energized applications with their special advantages.However,the relatively high total thermal conductivity(κ)prevents their TE enha... Si-based thermoelectric(TE)materials are exhibiting remarkable perspectives in self-energized applications with their special advantages.However,the relatively high total thermal conductivity(κ)prevents their TE enhancement.Here,a strategy of co-compositing dual oxides was implemented for enhancing the TE properties of p-type Si_(80)Ge_(20) bulks.Composited Ga2O_(3) was demonstrated to enhance the power factor(PF)due to the crystallization-induced effect of produced Ga by decomposition on SiGe matrix.Associating with compositing SiO_(2) aerogel(a-SiO_(2))powder,not only introduced the fine amorphous inclusions and decreased the grain size of host matrix,but also various nano morphologies were formed,i.e.,nano inclusions,precipitations,twin boundaries(TBs),and faults.Combining with the eutectic Ge,hierarchical scattering centers impeded the phonon transport comprehensively(decreasing the phonon group velocity(a v)and relaxation time)for reducing the lattice-induced thermal conductivity(lκ).As a result,a minimumκof 2.38 W·m^(−1)·K^(−1) was achieved,which is significantly dropped by 32.6%in contrast with that of the pristine counterpart.Ultimately,a maximal dimensionless figure of merit(ZT)of 0.9 was achieved at 600℃,which is better than those of most corresponding oxide-composited Si-based bulks. 展开更多
关键词 thermoelectric(TE)materials SiGe Ga_(2)O_(3) SiO_(2)aerogel(a-SiO_(2)) average velocity of sound hierarchical scattering
原文传递
Realizing high thermoelectric performance for p-type SiGe in medium temperature region via TaC compositing 被引量:1
7
作者 Zheng Fan JiSheng Liang +6 位作者 Jun-Liang Chen Ying Peng Huajun Lai Jian Nong chengyan liu Wangyang Ding Lei Miao 《Journal of Materiomics》 SCIE CSCD 2023年第5期984-991,共8页
SiGe is recognised as an excellent thermoelectric material with superior mechanical properties and thermal stability in regions with high temperatures.This study explores a novel strategy for coregulating thermoelectr... SiGe is recognised as an excellent thermoelectric material with superior mechanical properties and thermal stability in regions with high temperatures.This study explores a novel strategy for coregulating thermoelectric transport parameters to achieve high thermoelectric properties of p-type SiGe in the mid-temperature region by incorporating nano-TaC into SiGe combined ball milling with spark plasma sintering.By optimizing the amount of TaC in the SiGe matrix,the power factors were significantly increased due to the modulation doping effect based on the work function matching of SiGe with TaC.Simultaneously,the ensemble effect of the nanostructure leads to a significant decrease in thermal conductivity.Thus,a high ZT of 1.06 was accomplished at 873 K,which is 64%higher than that of typical radioisotope thermoelectric generator.Our research offers a novel strategy for expanding and enhancing the thermoelectric properties of SiGe materials in the medium temperature range. 展开更多
关键词 SIGE THERMOELECTRIC Work function matching Modulation doping effect Phonon scattering
原文传递
Superior multiphase interfaces in AgCuTe-based composite with significantly enhanced thermoelectric properties
8
作者 Wenpei Li Zhonghai Yu +8 位作者 chengyan liu Ying Peng Baoquan Feng Jie Gao Guojing Wu Xiaobo Bai Junliang Chen Xiaoyang Wang Lei Miao 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第8期1511-1520,共10页
It is common sense that a phase interface(or grain boundary)could be used to scatter phonons in thermoelectric(TE)materials,resulting in low thermal conductivity(k).However,a large number of impurity phases are always... It is common sense that a phase interface(or grain boundary)could be used to scatter phonons in thermoelectric(TE)materials,resulting in low thermal conductivity(k).However,a large number of impurity phases are always so harmful to the transport of carriers that poor TE performance is obtained.Here,we demonstrate that numerous superior multiphase(AgCuTe,Ag_(−2)Te,copper telluride(Cu_(2)Te and Cu_(2−x)Te),and nickel telluride(NiTe))interfaces with simultaneous strong phonon scattering and weak electron scattering could be realized in AgCuTe-based TE materials.Owing to the similar chemical bonds in these phases,the depletion region at phase interfaces,which acts as carrier scattering centers,could be ignored.Therefore,the power factor(PF)is obviously enhanced from~609 to~832μW·m^(−1)·K^(−2),and k is simultaneously decreased from~0.52 to~0.43 W·m^(−1)·K^(−1) at 636 K.Finally,a peak figure of merit(zT)of~1.23 at 636 K and an average zT(zTavg)of~1.12 in the temperature range of 523–623 K are achieved,which are one of the best values among the AgCuTe-based TE materials.This study could provide new guidance to enhance the performance by designing superior multiphase interfaces in the TE materials. 展开更多
关键词 thermoelectric(TE)materials AgCuTe phase interface carrier scattering phonon scattering
原文传递
Carrier and microstructure tuning for improving the thermoelectric properties of Ag_(8)SnSe_(6)via introducing SnBr_(2) 被引量:1
9
作者 Zhonghai YU Xiuxia WANG +8 位作者 chengyan liu Yiran CHENG Zhongwei ZHANG Ruifan SI Xiaobo BAI Xiaokai HU Jie GAO Ying PENG Lei MIAO 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第7期1144-1152,共9页
The argyrodite compounds(2 A(12)/B X6 m n n^(m+)+--(Am+=Li^(+),Cu^(+),and Ag^(+);Bn^(+)=Ga^(3+),Si^(4+),Ge^(4+),Sn^(4+),P^(5+),and As^(5+);and X^(2−)=S^(2−),Se^(2−),or Te^(2−)))have attracted great attention as excell... The argyrodite compounds(2 A(12)/B X6 m n n^(m+)+--(Am+=Li^(+),Cu^(+),and Ag^(+);Bn^(+)=Ga^(3+),Si^(4+),Ge^(4+),Sn^(4+),P^(5+),and As^(5+);and X^(2−)=S^(2−),Se^(2−),or Te^(2−)))have attracted great attention as excellent thermoelectric(TE)materials due to their extremely low lattice thermal conductivity(κl).Among them,Ag_(8)SnSe_(6)-based TE materials have high potential for TE applications.However,the pristine Ag_(8)SnSe_(6)materials have low carrier concentration(<1017 cm^(−3)),resulting in low power factors.In this study,a hydrothermal method was used to synthesize Ag_(8)SnSe_(6)with high purity,and the introduction of SnBr_(2)into the pristine Ag_(8)SnSe_(6)powders has been used to simultaneously increase the power factor and decrease the thermal conductivity(κ).On the one hand,a portion of the Br−ions acted as electrons to increase the carrier concentration,increasing the power factor to a value of~698 mW·m^(−1)·K^(−2)at 736 K.On the other hand,some of the dislocations and nanoprecipitates(SnBr_(2))were generated,resulting in a decrease ofκl(~0.13 W·m^(−1)·K^(−1))at 578 K.As a result,the zT value reaches~1.42 at 735 K for the sample Ag8Sn1.03Se5.94Br0.06,nearly 30%enhancement in contrast with that of the pristine sample(~1.09).The strategy of synergistic manipulation of carrier concentration and microstructure by introducing halogen compounds could be applied to the argyrodite compounds to improve the TE properties. 展开更多
关键词 Ag_(8)SnSe_(6) thermoelectric(TE)performance lattice thermal conductivity SnBr_(2) introduction hydrothermal method
原文传递
Substantial thermoelectric enhancement achieved by manipulating the band structure and dislocations in Ag and La co-doped SnTe 被引量:1
10
作者 Wenjing XU Zhongwei ZHANG +6 位作者 chengyan liu Jie GAO Zhenyuan YE Chunguang CHEN Ying PENG Xiaobo BAI Lei MIAO 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第4期860-870,共11页
Eco-friendly SnTe based thermoelectric materials are intensively studied recently as candidates to replace PbTe;yet the thermoelectric performance of SnTe is suppressed by its intrinsically high carrier concentration ... Eco-friendly SnTe based thermoelectric materials are intensively studied recently as candidates to replace PbTe;yet the thermoelectric performance of SnTe is suppressed by its intrinsically high carrier concentration and high thermal conductivity.In this work,we confirm that the Ag and La co-doping can be applied to simultaneously enhance the power factor and reduce the thermal conductivity,contributing to a final promotion of figure of merit.On one hand,the carrier concentration and band offset between valence bands are concurrently reduced,promoting the power factor to a highest value of-2436μW·m^(-1)·K^(-2) at 873 K.On the other hand,lots of dislocations(~3.16×10^(7)mm^(-2))associated with impurity precipitates are generated,resulting in the decline of thermal conductivity to a minimum value of 1.87 W·m^(-1)·K^(-1) at 873 K.As a result,a substantial thermoelectric performance enhancement up to zT≈1.0 at 873 K is obtained for the sample Sn0.94Ag0.09La0.05Te,which is twice that of the pristine SnTe(zT≈0.49 at 873 K).This strategy of synergistic manipulation of electronic band and microstructures via introducing rare earth elements could be applied to other systems to improve thermoelectric performance. 展开更多
关键词 SnTe band convergence dislocation Ag and La co-doping thermoelectric performance
原文传递
Enhancing thermoelectric performance in P-type Mg_(3)Sb_(2)-based Zintls through optimization of band gap structure and nanostructuring
11
作者 Yi-bo Zhang Ji-Sheng Liang +6 位作者 chengyan liu Qi Zhou Zhe Xu Hong-bo Chen Fu-cong Li Ying Peng Lei Miao 《Journal of Materials Science & Technology》 SCIE EI CAS 2024年第3期25-32,共8页
P-type Mg_(3)Sb_(2)-based Zintls have attracted considerable interest in the thermoelectric(TE)field due to their environmental friendliness and low cost.However,compared to their n-type counterparts,they show relativ... P-type Mg_(3)Sb_(2)-based Zintls have attracted considerable interest in the thermoelectric(TE)field due to their environmental friendliness and low cost.However,compared to their n-type counterparts,they show relatively low TE performance,limiting their application in TE devices.In this work,we simultaneously introduce Bi alloying at Sb sites and Ag doping at Mg sites into the Mg_(3)Sb_(2)to coopera-tively optimize the electrical and thermal properties for the first time,acquiring the highest ZT value of∼0.85 at 723 K and a high average ZT of 0.39 in the temperature range of 323-723 K in sample Mg_(2.94)Ag_(0.06)Sb_(1.9)Bi_(0.1).The first-principle calculations show that the codoping of Ag and Bi can shift the Fermi level into the valence band and narrow the band gap,resulting in the increased carrier concentration from 3.50×10^(17)cm^(-3)in the reference Mg 3 Sb 0.9 Bi 0.1 to∼7.88×10^(19)cm^(-3)in sample Mg 2.94 Ag 0.06 Sb 0.9 Bi 0.1.As a result,a remarkable power factor of∼778.9μW m^(-1)K^(-2)at 723 K is achieved in sample Mg 2.94 Ag 0.06 Sb 0.9 Bi 0.1.Meanwhile,a low lattice thermal conductivity of∼0.48 W m^(-1)K^(-1)at 723 K is also obtained with the help of phonon scattering at the distorted lattice,point defects,and nano-precipitates in sample Mg 2.94 Ag 0.06 Sb 0.9 Bi 0.1.The synergistic effect of using the multi-element co-doping/-alloying to optimize electrical properties in Mg_(3)Sb_(2)holds promise for further improving the TE performance of Zintl phase materials or even others. 展开更多
关键词 Thermoelectric materials Band engineering Nanostructuring P-type Mg_(3)Sb_(2) Ag and Bi Co-doping
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部