期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Craniofacial therapy:advanced local therapies from nano-engineered titanium implants to treat craniofacial conditions 被引量:1
1
作者 Karan Gulati chengye ding +3 位作者 Tianqi Guo Houzuo Guo Huajie Yu Yan Liu 《International Journal of Oral Science》 SCIE CAS CSCD 2023年第1期33-49,共17页
Nano-engineering-based tissue regeneration and local therapeutic delivery strategies show significant potential to reduce the health and economic burden associated with craniofacial defects,including traumas and tumou... Nano-engineering-based tissue regeneration and local therapeutic delivery strategies show significant potential to reduce the health and economic burden associated with craniofacial defects,including traumas and tumours.Critical to the success of such nano-engineered non-resorbable craniofacial implants include load-bearing functioning and survival in complex local trauma conditions.Further,race to invade between multiple cells and pathogens is an important criterion that dictates the fate of the implant.In this pioneering review,we compare the therapeutic efficacy of nano-engineered titanium-based craniofacial implants towards maximised local therapy addressing bone formation/resorption,soft-tissue integration,bacterial infection and cancers/tumours.We present the various strategies to engineer titanium-based craniofacial implants in the macro-,micro-and nano-scales,using topographical,chemical,electrochemical,biological and therapeutic modifications.A particular focus is electrochemically anodised titanium implants with controlled nanotopographies that enable tailored and enhanced bioactivity and local therapeutic release.Next,we review the clinical translation challenges associated with such implants.This review will inform the readers of the latest developments and challenges related to therapeutic nano-engineered craniofacial implants. 展开更多
关键词 IMPLANTS TITANIUM LOCAL
下载PDF
Prim-O-glucosylcimifugin ameliorates aging-impaired endogenous tendon regeneration by rejuvenating senescent tendon stem/progenitor cells
2
作者 Yu Wang Shanshan Jin +13 位作者 Dan Luo Danqing He Min Yu Lisha Zhu Zixin Li Liyuan Chen chengye ding Xiaolan Wu Tianhao Wu Weiran Huang Xuelin Zhao Meng Xu Zhengwei Xie Yan Liu 《Bone Research》 SCIE CAS CSCD 2023年第4期784-802,共19页
Adult tendon stem/progenitor cells(TSPCs)are essential for tendon maintenance,regeneration,and repair,yet they become susceptible to senescence with age,impairing the self-healing capacity of tendons.In this study,we ... Adult tendon stem/progenitor cells(TSPCs)are essential for tendon maintenance,regeneration,and repair,yet they become susceptible to senescence with age,impairing the self-healing capacity of tendons.In this study,we employ a recently developed deep-learning-based efficacy prediction system to screen potential stemness-promoting and senescence-inhibiting drugs from natural products using the transcriptional signatures of stemness.The top-ranked candidate,prim-O-glucosylcimifugin(POG),a saposhnikovia root extract,could ameliorate TPSC senescent phenotypes caused by long-term passage and natural aging in rats and humans,as well as restore the self-renewal and proliferative capacities and tenogenic potential of aged TSPCs.In vivo,the systematic administration of POG or the local delivery of POG nanoparticles functionally rescued endogenous tendon regeneration and repair in aged rats to levels similar to those of normal animals.Mechanistically,POG protects TSPCs against functional impairment during both passage-induced and natural aging by simultaneously suppressing nuclear factor-κB and decreasing mTOR signaling with the induction of autophagy.Thus,the strategy of pharmacological intervention with the deep learning-predicted compound POG could rejuvenate aged TSPCs and improve the regenerative capacity of aged tendons. 展开更多
关键词 TENDON ENDOGENOUS PROGENITOR
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部