期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Changes in bulk soil affect the disease-suppressive rhizosphere microbiome against Fusarium wilt disease 被引量:1
1
作者 Lin FU Wu XIONG +6 位作者 Francisco DINI-ANDREOTE Beibei WANG chengyuan tao Yunze RUAN Zongzhuan SHEN Rong LI Qirong SHEN 《Frontiers of Agricultural Science and Engineering》 2020年第3期307-316,共10页
Harnessing disease suppressive microbiomes constitutes a promising strategy for optimizing plant growth.However,relatively lttle information is available about the relationship between bulk and rhizosphere soil microb... Harnessing disease suppressive microbiomes constitutes a promising strategy for optimizing plant growth.However,relatively lttle information is available about the relationship between bulk and rhizosphere soil microbiomes.Here,the assembly of banana bulk soil and rhizosphere microbiomes was investigated in a mono-culture system consisting of bio-organic(BIO)and organic management practices.Applying BIO practice in newly reclaimed fields resulted in a high-efficiency biocontrol rate,thus providing a promising strategy for pre-control of Fusarium wilt disease.The soil microbiota was further characterized by MiSeq sequencing and quantitative PCR.The results indicate that disease suppression was mediated by the structure of a suppressive rhizosphere microbiome with respect to distinct community composition,diversity and abundance.Overall microbiome suppressiveness was primarily related to a particular set of enriched bacterial taxa affiliated with Pseudomonas,Terrimonas,Cupriavi-dus,Gp6,Ohtaekwangia and Duganella.Finally,struc-tural equation modeling was used to show that the changes in bulk soil bacterial community determined its induced rhizosphere bacterial community,which serves as an important and direct factor in restraining the pathogen.Collectively,this study provides an integrative approach to disentangle the biological basis of disease-suppressive microbiomes in the context of agricultural practice and soil management. 展开更多
关键词 agricultural practice bulk soil disease suppression rhizosphere ecology
原文传递
Shared Core Microbiome and Functionality of Key Taxa Suppressive to Banana Fusarium Wilt
2
作者 Zongzhuan Shen Linda S.Thomashow +7 位作者 Yannan Ou chengyuan tao Jiabao Wang Wu Xiong Hongjun Liu Rong Li Qirong Shen George A.Kowalchuk 《Research》 EI CAS CSCD 2023年第1期169-183,共15页
Microbial contributions to natural soil suppressiveness have been reported for a range of plant pathogens and cropping systems.To disentangle the mechanisms underlying suppression of banana Panama disease caused by Fu... Microbial contributions to natural soil suppressiveness have been reported for a range of plant pathogens and cropping systems.To disentangle the mechanisms underlying suppression of banana Panama disease caused by Fusarium oxysporum f.sp.cubense tropical race 4(Foc4),we used amplicon sequencing to analyze the composition of the soil microbiome from six separate locations,each comprised of paired orchards,one potentially suppressive and one conducive to the disease.Functional potentials of the microbiomes from one site were further examined by shotgun metagenomic sequencing after soil suppressiveness was confrmed by greenhouse experiments.Potential key antagonists involved in disease suppression were also isolated,and their activities were validated by a combination of microcosm and pot experiments.We found that potentially suppressive soils shared a common core community with relatively low levels of F.oxysporum and relatively high proportions of Myxococcales,Pseudomonadales,and Xanthomonadales,with five genera,Anaeromyxobacter,Kofleria,Plesiocystis,Pseudomonas,and Rhodanobacter being significantly enriched.Further,Pseudomonas was identified as a potential key taxon linked to pathogen suppression.Metagenomic analysis showed that,compared to the conducive soil,the microbiome in the disease suppressive soil displayed a significantly greater incidence of genes related to quorum sensing,biofilm formation,and synthesis of antimicrobial compounds potentially active against Foc4.We also recovered a higher frequency of antagonistic Pseudomonas isolates from disease suppressive experimental field sites,and their protective effects against banana Fusarium wilt disease were demonstrated under greenhouse conditions.Despite differences in location and soil conditions,separately located suppressive soils shared common characteristics,including enrichment of Myxococcales,Pseudomonadales,and Xanthomonadales,and enrichment of specific Pseudomonas populations with antagonistic activity against the pathogen.Moreover,changes in functional capacity toward an increase in quorum sensing,biofilm formation,and antimicrobial compound synthesizing involve in disease suppression. 展开更多
关键词 soil GREENHOUSE Functional
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部