期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Synergistically boosting the elementary reactions over multiheterogeneous ordered macroporous Mo2C/NC-Ru for highly efficient alkaline hydrogen evolution 被引量:4
1
作者 Kaixi Wang Shuo Wang +7 位作者 Kwan San Hui Haixing Gao Duc Anh Dinh chengzong yuan Chenyang Zha Zongping Shao Zikang Tang Kwun Nam Hui 《Carbon Energy》 SCIE CAS 2022年第5期856-866,共11页
Simultaneously enhancing the reaction kinetics,mass transport,and gas release during alkaline hydrogen evolution reaction(HER)is critical to minimizing the reaction polarization resistance,but remains a big challenge.... Simultaneously enhancing the reaction kinetics,mass transport,and gas release during alkaline hydrogen evolution reaction(HER)is critical to minimizing the reaction polarization resistance,but remains a big challenge.Through rational design of a hierarchical multiheterogeneous three-dimensionally(3D)ordered macroporous Mo_(2)C-embedded nitrogen-doped carbon with ultrafine Ru nanoclusters anchored on its surface(OMS Mo_(2)C/NC-Ru),we realize both electronic and morphologic engineering of the catalyst to maximize the electrocatalysis performance.The formed Ru-NC heterostructure shows regulative electronic states and optimized adsorption energy with the intermediate H*,and the Mo_(2)C-NC heterostructure accelerates the Volmer reaction due to the strong water dissociation ability as confirmed by theoretical calculations.Consequently,superior HER activity in alkaline solution with an extremely low overpotential of 15.5 mV at 10 mAcm^(−2)with the mass activity more than 17 times higher than that of the benchmark Pt/C,an ultrasmall Tafel slope of 22.7 mV dec−1,and excellent electrocatalytic durability were achieved,attributing to the enhanced mass transport and favorable gas release process endowed from the unique OMS Mo_(2)C/NC-Ru structure.By oxidizing OMS Mo_(2)C/NC-Ru into OMS MoO_(3)-RuO_(2)catalyst,it can also be applied as efficient oxygen evolution electrocatalyst,enabling the construction of a quasi-symmetric electrolyzer for overall water splitting.Such a device's performance surpassed the state-of-the-art Pt/C||RuO2 electrolyzer.This study provides instructive guidance for designing 3D-ordered macroporous multicomponent catalysts for efficient catalytic applications. 展开更多
关键词 HETEROSTRUCTURE hydrogen evolution reaction molybdenum carbide ordered macroporous structure ruthenium nanoparticle synergistic effect
下载PDF
Electrodeposition of a dendrite-free 3D Al anode for improving cycling of an aluminum-graphite battery 被引量:1
2
作者 Junfeng Li Kwan San Hui +8 位作者 Shunping Ji Chenyang Zha chengzong yuan Shuxing Wu Feng Bin Xi Fan Fuming Chen Zongping Shao Kwun Nam Hui 《Carbon Energy》 SCIE CAS 2022年第2期155-169,共15页
Aluminum-metal batteries show great potential as next-generation energy storage due to their abundant resources and intrinsic safety.However,the crucial limitations of metallic Al anodes,such as dendrite and corrosion... Aluminum-metal batteries show great potential as next-generation energy storage due to their abundant resources and intrinsic safety.However,the crucial limitations of metallic Al anodes,such as dendrite and corrosion problems in conventional aluminum-metal batteries,remain challenging and elusive.Here,we report a novel electrodeposition strategy to prepare an optimized 3D Al anode on carbon cloth with an uniform deposition morphology,low local current density,and mitigatory volume change.The symmetrical cells with the 3D Al anode show superior stable cycling(>450 h)and low-voltage hysteresis(~170 mV)at 0.5 mA cm^(−2).High reversibility(~99.7%)is achieved for the Al plating/stripping.The graphite||Al‐4/CC full batteries show a long lifespan of 800 cycles with 54 mAh g^(−1) capacity at a high current density of 1000 mA g^(−1),benefiting from the high capacitive-controlled distribution.This study proposes a novel strategy to design 3D Al anodes for metallic-Al-based batteries by eliminating the problems of planar Al anodes and realizing the potential applications of aluminum-graphite batteries. 展开更多
关键词 3D Al anode ionic liquid metallic plating/stripping stability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部