Cold seeps in the deep sea are closely linked to energy exploration as well as global climate change.The alkane-dominated chemical energy-driven model makes cold seeps an oasis of deep-sea life,showcasing an unparalle...Cold seeps in the deep sea are closely linked to energy exploration as well as global climate change.The alkane-dominated chemical energy-driven model makes cold seeps an oasis of deep-sea life,showcasing an unparalleled reservoir of microbial genetic diversity.Here,by analyzing 113 metagenomes collected from 14 global sites across 5 cold seep types,we present a comprehensive Cold Seep Microbiomic Database(CSMD)to archive the genomic and functional diversity of cold seep microbiomes.The CSMD includes over 49 million non-redundant genes and 3175 metagenome-assembled genomes,which represent 1895 species spanning 105 phyla.In addition,beta diversity analysis indicates that both the sampling site and cold seep type have a substantial impact on the prokaryotic microbiome community composition.Heterotrophic and anaerobic metabolisms are prevalent in microbial communities,accompanied by considerable mixotrophs and facultative anaerobes,highlighting the versatile metabolic potential in cold seeps.Furthermore,secondary metabolic gene cluster analysis indicates that at least 98.81%of the sequences potentially encode novel natural products,with ribosomally synthesized and post-translationally modified peptides being the predominant type widely distributed in archaea and bacteria.Overall,the CSMD represents a valuable resource that would enhance the understanding and utilization of global cold seep microbiomes.展开更多
基金support from the Senior User Project of RV KEXUE(Grant No.KEXUE2019GZ05)the Center for Ocean Mega-Science,Chinese Academy of Sciences+2 种基金funding support from the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2021QZKK0100)the National Key R&D Program of China(Grant No.2022YFF1002801)the National Natural Science Foundation of China(Grant No.92251302).
文摘Cold seeps in the deep sea are closely linked to energy exploration as well as global climate change.The alkane-dominated chemical energy-driven model makes cold seeps an oasis of deep-sea life,showcasing an unparalleled reservoir of microbial genetic diversity.Here,by analyzing 113 metagenomes collected from 14 global sites across 5 cold seep types,we present a comprehensive Cold Seep Microbiomic Database(CSMD)to archive the genomic and functional diversity of cold seep microbiomes.The CSMD includes over 49 million non-redundant genes and 3175 metagenome-assembled genomes,which represent 1895 species spanning 105 phyla.In addition,beta diversity analysis indicates that both the sampling site and cold seep type have a substantial impact on the prokaryotic microbiome community composition.Heterotrophic and anaerobic metabolisms are prevalent in microbial communities,accompanied by considerable mixotrophs and facultative anaerobes,highlighting the versatile metabolic potential in cold seeps.Furthermore,secondary metabolic gene cluster analysis indicates that at least 98.81%of the sequences potentially encode novel natural products,with ribosomally synthesized and post-translationally modified peptides being the predominant type widely distributed in archaea and bacteria.Overall,the CSMD represents a valuable resource that would enhance the understanding and utilization of global cold seep microbiomes.