Activating MoS_(2) with atomic metal doping is promising to harvest desirable Pt-matched hydrogen evolution reaction(HER)catalytic performance.Herein,we developed an efficient method to access edgerich lattice-distort...Activating MoS_(2) with atomic metal doping is promising to harvest desirable Pt-matched hydrogen evolution reaction(HER)catalytic performance.Herein,we developed an efficient method to access edgerich lattice-distorted MoS_(2) for highly efficient HER via in-situ sulphuration of atomic Co/Mo species that were well-dispersed in a formamide-derived N-doped carbonaceous(f-NC)substrate.Apart from others,pre-embedding Co/Mo species in f-NC controls the release of metal sources upon annealing in S vapor,grafting the as-made MoS_(2) with merits of short-range crystallinity,distorted lattices,rich defects,and more edges exposed.The content of atomic Co species embedded in MoS_(2) reaches up to 2.85 at.%,and its atomic dispersion has been systematically confirmed by using XRD,HRTEM,XPS,and XAS characterizations.The Co-doped MoS_(2) sample exhibits excellent HER activity,achieving overpotentials of 67 and155 m V at j=10 m A cm^(-2) in 1.0 M KOH and 0.5 M H_(2)SO_(4),respectively.Density functional theory simulations suggest that,compared with free-doping MoS_(2),the edged Co doping is responsible for the significantly improved HER activity.Our method,in addition to providing reliable Pt-matched HER catalysts,may also inspire the general synthesis of edge-rich metal-doped metal chalcogenide for a wide range of energy conversion applications.展开更多
基金financially supported by the National Natural Science Foundation of China(22071137)。
文摘Activating MoS_(2) with atomic metal doping is promising to harvest desirable Pt-matched hydrogen evolution reaction(HER)catalytic performance.Herein,we developed an efficient method to access edgerich lattice-distorted MoS_(2) for highly efficient HER via in-situ sulphuration of atomic Co/Mo species that were well-dispersed in a formamide-derived N-doped carbonaceous(f-NC)substrate.Apart from others,pre-embedding Co/Mo species in f-NC controls the release of metal sources upon annealing in S vapor,grafting the as-made MoS_(2) with merits of short-range crystallinity,distorted lattices,rich defects,and more edges exposed.The content of atomic Co species embedded in MoS_(2) reaches up to 2.85 at.%,and its atomic dispersion has been systematically confirmed by using XRD,HRTEM,XPS,and XAS characterizations.The Co-doped MoS_(2) sample exhibits excellent HER activity,achieving overpotentials of 67 and155 m V at j=10 m A cm^(-2) in 1.0 M KOH and 0.5 M H_(2)SO_(4),respectively.Density functional theory simulations suggest that,compared with free-doping MoS_(2),the edged Co doping is responsible for the significantly improved HER activity.Our method,in addition to providing reliable Pt-matched HER catalysts,may also inspire the general synthesis of edge-rich metal-doped metal chalcogenide for a wide range of energy conversion applications.