期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An integrated strategy towards the facile synthesis of core-shell SiC-derived carbon@N-doped carbon for high-performance supercapacitors 被引量:3
1
作者 Zhongya Pang Guangshi Li +7 位作者 Xingli Zou chenteng sun Conghui Hu Wei Tang Li Ji Hsien-Yi Hsu Qian Xu Xionggang Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期512-521,共10页
Porous active core-shell carbon material with excellent synergistic effect has been regarded as a prospective material for supercapacitors.Herein,we report an integrated method for the facile synthesis of carbide-deri... Porous active core-shell carbon material with excellent synergistic effect has been regarded as a prospective material for supercapacitors.Herein,we report an integrated method for the facile synthesis of carbide-derived carbon(CDC)encapsulated with porous N-doped carbon(CDC@NC)towards highperformance supercapacitors.Polydopamine(PDA)as nitrogen and carbon sources was simply coated on SiC nanospheres to form SiC@PDA,which was then directly transformed into CDC@NC via a onestep molten salt electro-etching/in-situ doping process.The synthesized CDC@NC with hierarchically porous structure has a high specific surface area of 1191 m^(2) g^(-1).The CDC core and NC shell are typical amorphous carbon and more ordered N-doped carbon,respectively.Benefitting from its unique dual porous structures,the CDC@NC demonstrates high specific capacitances of 255 and 193 F g^(-1) at 0.5 and20 A g^(-1),respectively.The reaction mechanism of the electro-etching/in-situ doping process has also been investigated through experimental characterizations and theoretical density functional theory calculations.It is suggested that the molten salt electro-etching/in-situ doping strategy is promising for the synthesis of active core-shell porous carbon materials with synergistic properties for supercapacitors without the need for additional doping/activation processes. 展开更多
关键词 Molten salt Electrochemical etching Core-shell structure Porous carbon In-situ nitrogen doping SUPERCAPACITORS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部