With the rapid development of“Internet of Things”and human-computer interaction techniques,it is essential and urgent to develop facile and scalable fabrication platforms for stretchable flexible sensor.Herein,we re...With the rapid development of“Internet of Things”and human-computer interaction techniques,it is essential and urgent to develop facile and scalable fabrication platforms for stretchable flexible sensor.Herein,we report a facile strategy of using the green choline chloride-acrylamide deep eutectic solvent(CC-AM DES)to guide the in-situ ring-opening polymerization ofα-lipoic acid(LA),leading to the successful development of a stretchable ionogel material.The as-prepared ionogel from CC-AM DES system exhibits multifunctional merits including the super stretchability(>9000%),100%UV-blocking ability,tunable adhesiveness(29-414 kPa),high ionic conductivity(4.45×10^(-4) S/cm),and ideal anti-freezing(-27℃).In addition,this outstanding ionogel can be readily coated on various material substrates with designable shapes and patterns.Owning to these promising properties and performances,a scalable flexible strain sensor is assembled from the ionogel and exhibits stable resistance variations(R/R_(0))towards multiple external mechanical stimulus.This study provides a green,cost effective,and scalable strategy to fabricate ionogel materials and multifunctional flexible strain sensors,showing a great potential in the fast-emerging highly stretchable wearable/flexible electronics.展开更多
基金supported by the National Natural Science Foundation of China(32071715)Canada Research Chairs program of the Government of Canada,and National Science Foundation for Post-doctoral Scientists of China(2019M651050).
文摘With the rapid development of“Internet of Things”and human-computer interaction techniques,it is essential and urgent to develop facile and scalable fabrication platforms for stretchable flexible sensor.Herein,we report a facile strategy of using the green choline chloride-acrylamide deep eutectic solvent(CC-AM DES)to guide the in-situ ring-opening polymerization ofα-lipoic acid(LA),leading to the successful development of a stretchable ionogel material.The as-prepared ionogel from CC-AM DES system exhibits multifunctional merits including the super stretchability(>9000%),100%UV-blocking ability,tunable adhesiveness(29-414 kPa),high ionic conductivity(4.45×10^(-4) S/cm),and ideal anti-freezing(-27℃).In addition,this outstanding ionogel can be readily coated on various material substrates with designable shapes and patterns.Owning to these promising properties and performances,a scalable flexible strain sensor is assembled from the ionogel and exhibits stable resistance variations(R/R_(0))towards multiple external mechanical stimulus.This study provides a green,cost effective,and scalable strategy to fabricate ionogel materials and multifunctional flexible strain sensors,showing a great potential in the fast-emerging highly stretchable wearable/flexible electronics.