期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Establishing a theoretical insight for penta-coordinated ironnitrogen-carbon catalysts toward oxygen reaction 被引量:1
1
作者 Ruihu Lu chenxi quan +4 位作者 Chengyi Zhang Qiu He Xiaobin Liao Zhaoyang Wang Yan Zhao 《Nano Research》 SCIE EI CSCD 2022年第7期6067-6075,共9页
Developing highly active iron-nitrogen-carbon catalysts for electrocatalytic oxygen reduction reactions(ORR)is pivotal to future energy technology.The penta-coordinated Fe-N-C with an augmented activity toward the oxy... Developing highly active iron-nitrogen-carbon catalysts for electrocatalytic oxygen reduction reactions(ORR)is pivotal to future energy technology.The penta-coordinated Fe-N-C with an augmented activity toward the oxygen reduction has been regarded as one of the promising candidates to replace platinum-based ORR catalysts.However,the lack of pertinent fundamental understanding hinders further optimizing the catalytic activity of such catalysts.Herein,through density functional theory(DFT)calculations,we systematically investigated the catalytic activity and ligand/metal coordination effects of 17 penta-coordinated FeN-C catalysts(labeled as FeNC-Xs,X denotes axial ligand).Our results not only show the theoretical overpotential of FeNC-Xs is lower than that of conventional tetra-coordinated Fe-N-C catalysts(labeled as FeNC),verifying the preeminent performance of FeNC-Xs,but also further indicate that the axial coordination effect of X ligands can decrease the orbital hybridization of Fe active center with ORR-relevant intermediates,sequentially accelerating the ORR.More importantly,we reveal that the catalytic activity of FeNC-Xs increases with a decreased electronegativity of X ligands,which can be utilized to describe the axial coordination effect for FeNC-Xs.These findings can deeply advance the understanding of penta-coordinated iron-nitrogencarbon catalysts,which provide timely guidelines for designing optimum Fe-N-C based catalysts. 展开更多
关键词 iron-nitrogen-carbon catalysts axial ligands first-principles calculations oxygen reduction reactions orbital hybridization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部