The effects of inlet gas parameters and sloping sidewall angle on the flame structure and combustion limit with and without sidewall were experimentally investigated.Flame height and impact angle were obtained by che...The effects of inlet gas parameters and sloping sidewall angle on the flame structure and combustion limit with and without sidewall were experimentally investigated.Flame height and impact angle were obtained by chemiluminescence intensity analysis of CH*distribution.First,the combustion characteristics of flame with and without sidewall at different equivalence ratios were explored;then,the influence of Reynolds number and inlet gas temperature on flame structure and combustion limit of v-shaped flame with sidewall were analyzed,and the results with sidewall were compared with those without sidewall.Finally,the variation trend of flame parameters with different sloping sidewall angles was analyzed.The experimental results show that the existence of sidewall makes flame shape change from“M-shaped”to“inverted N-shaped”,and conical shape to trapezoidal shape.The inhibition effect of sidewall on flame stretching downstream is strengthened with the increase in Reynolds number;but as the temperature of the inlet gas increases,the inhibitory effect is obviously weakened.When sloping sidewall angle decreases from 90°to 55°at 5°intervals,flame height and impact angle of v-shaped flame reach the extreme value whenβ=80°.Compared with the case without sidewall,the range of v-shaped flame with sidewall has no obvious trend of broadening or shrinking when inlet gas temperature is increased;however,as sloping sidewall angle decreases,the range of the v-shaped flame shrinks obviously and flammability limit increases significantly.展开更多
In order to obtain the combustion characteristics of the CH4/Air premixed flame under the action of the wall interaction,a study on the impact of the jet flame on the wall at different separation distances was carried...In order to obtain the combustion characteristics of the CH4/Air premixed flame under the action of the wall interaction,a study on the impact of the jet flame on the wall at different separation distances was carried out.The separation distance from the burner outlet to the lower surface of the wall is changed and the flame structure is obtained through experiments.The temperature,velocity and reaction rate are obtained through numerical simulation,and the law of flame characteristics change is obtained through analysis.The results show that as the separation distance increases,the premixing cone inside the flame gradually changes from a horn shape to a complete cone shape and the length of the premixing cone profile increases.Also,the peak temperature and velocity of the mixture in the axial direction gradually increase,and the temperature and velocity in the radial direction first increase and then decrease.The temperature gradient and velocity reach the maximum when the separation distance is 11 mm.The peaks of reactants(CH_(4))net reaction rate intermediate products(CO)and products(CO_(2),H_(2)O)on the axis and the axial distance corresponding to the peaks increase accordingly.The chemical reaction rate near the wall also gradually decreases with the increase of the separation distance.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.51976082)Qing Lan Project.
文摘The effects of inlet gas parameters and sloping sidewall angle on the flame structure and combustion limit with and without sidewall were experimentally investigated.Flame height and impact angle were obtained by chemiluminescence intensity analysis of CH*distribution.First,the combustion characteristics of flame with and without sidewall at different equivalence ratios were explored;then,the influence of Reynolds number and inlet gas temperature on flame structure and combustion limit of v-shaped flame with sidewall were analyzed,and the results with sidewall were compared with those without sidewall.Finally,the variation trend of flame parameters with different sloping sidewall angles was analyzed.The experimental results show that the existence of sidewall makes flame shape change from“M-shaped”to“inverted N-shaped”,and conical shape to trapezoidal shape.The inhibition effect of sidewall on flame stretching downstream is strengthened with the increase in Reynolds number;but as the temperature of the inlet gas increases,the inhibitory effect is obviously weakened.When sloping sidewall angle decreases from 90°to 55°at 5°intervals,flame height and impact angle of v-shaped flame reach the extreme value whenβ=80°.Compared with the case without sidewall,the range of v-shaped flame with sidewall has no obvious trend of broadening or shrinking when inlet gas temperature is increased;however,as sloping sidewall angle decreases,the range of the v-shaped flame shrinks obviously and flammability limit increases significantly.
基金supported by the National Natural Science Foundation of China(Grant No.51976082)and Qing Lan project.
文摘In order to obtain the combustion characteristics of the CH4/Air premixed flame under the action of the wall interaction,a study on the impact of the jet flame on the wall at different separation distances was carried out.The separation distance from the burner outlet to the lower surface of the wall is changed and the flame structure is obtained through experiments.The temperature,velocity and reaction rate are obtained through numerical simulation,and the law of flame characteristics change is obtained through analysis.The results show that as the separation distance increases,the premixing cone inside the flame gradually changes from a horn shape to a complete cone shape and the length of the premixing cone profile increases.Also,the peak temperature and velocity of the mixture in the axial direction gradually increase,and the temperature and velocity in the radial direction first increase and then decrease.The temperature gradient and velocity reach the maximum when the separation distance is 11 mm.The peaks of reactants(CH_(4))net reaction rate intermediate products(CO)and products(CO_(2),H_(2)O)on the axis and the axial distance corresponding to the peaks increase accordingly.The chemical reaction rate near the wall also gradually decreases with the increase of the separation distance.