Despite that in-sensor processing has been proposed to remove the latency and energy consumption during the inevitable data transfer between spatial-separated sensors,memories and processors in traditional computer vi...Despite that in-sensor processing has been proposed to remove the latency and energy consumption during the inevitable data transfer between spatial-separated sensors,memories and processors in traditional computer vision,its hardware implementation for artificial neural networks(ANNs)with all-in-one device arrays remains a challenge,especially for organic-based ANNs.With the advantages of biocompatibility,low cost,easy fabrication and flexibility,here we implement a self-powered in-sensor ANN using molecular ferroelectric(MF)-based photomemristor arrays.Tunable ferroelectric depolarization was intentionally introduced into the ANN,which enables reconfigurable conductance and photoresponse.Treating photoresponsivity as synaptic weight,the MFbased in-sensor ANN can operate analog convolutional computation,and successfully conduct perception and recognition of white-light letter images in experiments,with low processing energy consumption.Handwritten Chinese digits are also recognized and regressed by a large-scale array,demonstrating its scalability and potential for low-power processing and the applications in MF-based in-situ artificial retina.展开更多
基金supported by the National Key Research and Development Program of China for International Cooperation(2020YFE0191300)the National Natural Science Foundation of China(Nos.62074040,61804055,T2222025 and 62174053)+1 种基金the Natural Science Foundation of Shanghai(No.20ZR1404000)Open Research Projects of Zhejiang Lab(2021MD0AB03).
文摘Despite that in-sensor processing has been proposed to remove the latency and energy consumption during the inevitable data transfer between spatial-separated sensors,memories and processors in traditional computer vision,its hardware implementation for artificial neural networks(ANNs)with all-in-one device arrays remains a challenge,especially for organic-based ANNs.With the advantages of biocompatibility,low cost,easy fabrication and flexibility,here we implement a self-powered in-sensor ANN using molecular ferroelectric(MF)-based photomemristor arrays.Tunable ferroelectric depolarization was intentionally introduced into the ANN,which enables reconfigurable conductance and photoresponse.Treating photoresponsivity as synaptic weight,the MFbased in-sensor ANN can operate analog convolutional computation,and successfully conduct perception and recognition of white-light letter images in experiments,with low processing energy consumption.Handwritten Chinese digits are also recognized and regressed by a large-scale array,demonstrating its scalability and potential for low-power processing and the applications in MF-based in-situ artificial retina.