To adapt to the change of aquaculture workshop site,optimize the shape of aquaculture tanks and improve the utilization rate of breeding space,it is necessary to determine the appropriate length width ratio parameters...To adapt to the change of aquaculture workshop site,optimize the shape of aquaculture tanks and improve the utilization rate of breeding space,it is necessary to determine the appropriate length width ratio parameters of aquaculture tanks.In this paper,computational fluid dynamics(CFD)technology is adopted to study the flow field performance of aquaculture tanks with different L/B ratios(L:the length;B:the width,of aquaculture tank)and different jet direction conditions(lengthways jet and widthways jet).A three-dimensional numerical calculation model of turbulence in rounded rectangle aquaculture tanks in dual-diagonal-inlet layout was established.Jet directions are arranged lengthways and widthways,and the water flow velocity,resistance coefficient change,vorticity,etc.are analyzed under two working conditions.Results show that the flow field performance in aquaculture tank decreases with the increase of the L/B ratio.The flow field performed well when L/B was 1.0-1.3,sharply dropped at 1.4-1.6,and poor at 1.7-1.9.The results provided a theoretical basis for the design and optimization in flow field performance of the industrialized circulating aquaculture tanks.展开更多
To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded s...To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded square aquaculture tank with a single inlet.Based on the physical model of the tank,analysis of how inlet structure adjustment affects sewage discharge efficiency and flow field characteristics was conducted to provide suitable flow field conditions for sinkable solid particle discharge.In addition,an internal flow field simulation was conducted using the RNG k-εturbulence model in hydraulic drive mode.Then a solid-fluid multiphase model was created to investigate how the inlet structure affects sewage collection in the rounded square aquaculture tank with single inlet and outlet.The finding revealed that the impact of inlet structure is considerably affecting sewage collection.The conditions of C/B=0.07-0.11(the ratio of horizontal distance between the center of the inlet pipe and the tank wall(C)to length of the tank(B))andα=25°(αis the angle between the direction of the jet and the tangential direction of the arc angle)resulted in optimal sewage collection,which is similar to the flow field experiment in the rounded square aquaculture tank with single inlet and outlet.An excellent correlation was revealed between sewage collection and fluid circulation stability in the aquaculture tank.The present study provided a reference for design and optimization of circulating aquaculture tanks in aquaculture industry.展开更多
This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators...This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators and the dynamic performance of weight changes.A dynamic layered sorting allocation method is also proposed.The proposed evaluation method considers the power-limiting degree of the last cycle,the adjustment margin,and volatility.It uses the theory of weight variation to update the entropy weight coefficients of each indicator in real time,and then performs a fuzzy evaluation based on the membership function to obtain intuitive comprehensive evaluation results.A case study of a large-scale wind power base in Northwest China was conducted.The proposed evaluation method is compared with fixed-weight entropy and principal component analysis methods.The results show that the three scoring trends are the same,and that the proposed evaluation method is closer to the average level of the latter two,demonstrating higher accuracy.The proposed allocation method can reduce the number of adjustments made to wind farms,which is significant for the allocation and evaluation of wind power clusters.展开更多
Due to the network planning of subways and their surrounding structures,increasingly more overlapping shields with a small curve radius have been constructed. A newly constructed upper tunnel partly overlaps a lower o...Due to the network planning of subways and their surrounding structures,increasingly more overlapping shields with a small curve radius have been constructed. A newly constructed upper tunnel partly overlaps a lower one, leading to the extremely complex uplift of the lower tunnel caused by the construction of a new tunnel. Based on the shield-driven project that runs from the Qinghe Xiaoyingqiao Station to the Qinghe Station in Beijing, which adopts the reinforcement measures of interlayer soil grouting and steel supports on site, in this study, the uplift pattern of the lower tunnel and the stress characteristics of steel supports were investigated through numerical simulations and on-site monitoring.The study results show that among all tunnel segments, the first segment of the shield witnesses a maximum uplift displacement that increases with the horizontal space between tunnels. On using either interlayer soil grouting or steel-ring bracing reinforcement, the uplift of the tunnel lining exceeds the control value;by contrast,when these two measures are jointly applied, the uplift of the tunnel lining does not exceed a maximum value of 4.87 mm, which can satisfy the requirements of deformation control. Under these two joint measures, the soil strength between two stacked shield tunnels can be enhanced and the uplift deformation can be restricted with the interlayer soil grouting. Also, the segmental deformation and overall stability of the existing tunnel can be controlled with the temporary steel supports.The deformation of circumferential supports and segments is closely related to each other, and the segmental uplift is controlled by H-shaped steel supports. With the increase in the horizontal space between twin shields, the effect of the construction would gradually weaken, accompanied by a gradual reduction of the stresses of steel supports. These findings provide a valuable reference for the engineering design and safe construction of overlapping shield tunnels with a small curve radius.展开更多
This paper describes the shortcomings and difficulties of power company security construction, such as site management for construction site security monitoring personnel is limited, in recent years , rural power grid...This paper describes the shortcomings and difficulties of power company security construction, such as site management for construction site security monitoring personnel is limited, in recent years , rural power grids and Urban Network alteration Faced with new situation. The use of advanced science and technology and communication terminal in order to better strengthen the means of power construction site safety supervision, improve the level of safety production supervision, design and development of a new electrical safety job site intelligent monitoring devices. The device consists of three parts of the remote wide angle 360 degrees of portable video surveillance equipment and 3G smart terminal equipment and portable battery. Through the application of such a device, professionals can remotely monitor the construction job site safety, diagnose, and effectively improve the security of the electricity sector management and reduce security risks and personnel on-site monitoring costs for improving the security of the entire power industry field operations with significance.展开更多
In this paper, at first the appearance background electricity grid in the rural areas of west China, and its meaning as well as the concept and structure of DG technologies are resented, and a DG technologies mode of ...In this paper, at first the appearance background electricity grid in the rural areas of west China, and its meaning as well as the concept and structure of DG technologies are resented, and a DG technologies mode of development in the rural areas of west China is given. The development ideas and the future development direction of DG in are compared and summarized. At last, the significance of DG in future development of the rural areas of west China is prospected and some problems to be especially considered in the domestic research on DG technologies are put forward.展开更多
A pair of coumarin-based polycyclic meroterpenoid enantiomers(+)/(-)-gerbeloid A[(+)-1a and(-)-1b]were isolated from the medicinal plant Gerbera piloselloides,which have a unique caged oxatricyclo[4.2.2.0^(3,8)]decene...A pair of coumarin-based polycyclic meroterpenoid enantiomers(+)/(-)-gerbeloid A[(+)-1a and(-)-1b]were isolated from the medicinal plant Gerbera piloselloides,which have a unique caged oxatricyclo[4.2.2.0^(3,8)]decene scaffold.Their planar and three-dimensional structures were exhaustively characterized by comprehensive spectroscopic data and X-ray diffraction analysis.Guided by the hypothetical biosynthetic pathway,the biomimetic synthesis of racemic 1 was achieved using 4-hydroxy-5-methylcoumarin and citral as the starting material via oxa-6πelectrocyclization and intramolecular[2+2]photocycloaddition.Subsequently,the results of the biological activity assay demonstrated that both(+)-1a and(-)-1b exhibited potent lipid-lowering effects in 3T3-L1 adipocytes and the high-fat diet zebrafish model.Notably,the lipid-lowering activity of(+)-1a is better than that of(-)-1b at the same concentration,and molecular mechanism study has shown that(+)-1a and(-)-1b impairs adipocyte differentiation and stimulate lipolysis by regulating C/EBPα/PPARγsignaling and Perilipin signaling in vitro and in vivo.Our findings provide a promising drug model molecule for the treatment of obesity.展开更多
In order to reduce the greenhouse effect caused by the rapid increase of CO_(2)concentration in the atmosphere,it is necessary to develop more efficient,controllable,and highly sensitive adsorbing materials.In this st...In order to reduce the greenhouse effect caused by the rapid increase of CO_(2)concentration in the atmosphere,it is necessary to develop more efficient,controllable,and highly sensitive adsorbing materials.In this study,the adsorption behavior of CO_(2)on BC_(3)nanosheets under an external electric field was explored based on density functional theory(DFT).It was found that CO_(2)experienced a transition from physisorption to chemisorption in the electric field range of 0.0060-0.0065 a.u..In addition,the adsorption/desorption of CO_(2)is reversible and can be precisely controlled by switching on/off at the electric field of 0.0065 a.u..The selective adsorption of CO_(2)/H_(2)/CH_(4)by BC_(3)can also be used to realize gas separation and purification under different electric fields.This study highlighted the potential application of BC_(3)nanosheets as a high-performance,controllable material for CO_(2)capture,regeneration,and separation in an electric field.展开更多
The photocatalytic nitrogen reduction reaction(NRR) has mild reaction conditions and only requires sunlight energy as a driving force to replace the traditional ammonia synthesis method. We herein investigate the cata...The photocatalytic nitrogen reduction reaction(NRR) has mild reaction conditions and only requires sunlight energy as a driving force to replace the traditional ammonia synthesis method. We herein investigate the catalytic activity and selectivity on Penta-B_(2)C for NRR by using density functional theory calculations. Penta-B_(2)C is a semiconductor with an indirect bandgap(2.328 e V) and is kinetically stable based on molecular dynamic simulations. The optical absorption spectrum of Penta-B;C is achieved in the ultraviolet and visible range. Effective light absorption is more conducive to generate photo-excited electrons and improving photocatalytic performances. Rich B atoms as activation sites in Penta-B_(2)C facilitate capturing N_(2). The activated N_(2)molecule prefers the side-on adsorption configuration on Penta-B_(2)C, which facilitates the subsequent reduction reaction. Among considered NRR mechanisms on Penta-B_(2)C, the best pathway prefers the enzymatic mechanism, only required a low onset potential of 0.23 V. The hydrogen evolution reaction is inhibited when the hydrogen adsorption concentration is increased or N_(2)molecules first occupy the adsorption sites. Our results indicate Penta-B_(2)C is a highly reactive and selective photocatalyst for NRR. Our work provides theoretical insights into the experiments and has guiding significance to synthesize efficient NRR photocatalysts.展开更多
To reduce the greenhouse effect caused by the surgery of nitrogen-oxides concentration in the atmosphere and develop a future energy carrier of renewables,it is very critical to develop more efficient,controllable,and...To reduce the greenhouse effect caused by the surgery of nitrogen-oxides concentration in the atmosphere and develop a future energy carrier of renewables,it is very critical to develop more efficient,controllable,and highly sensitive catalytic materials.In our work,we proposed that nitric oxide(NO),as a supplement to N_(2) for the synthesis of ammonia,which is equipped with a lower barrier.And the study highlighted the potential of CeO_(2)(111)nanosheets with La doping and oxygen vacancy(OV)as a high-performance,controllable material for NO capture at the site of Vo site,and separation the process of hydrogenation.We also reported that the E_(ads) of-1.12 eV with horizontal adsorption and the Bader charge of N increasing of 0.53|e|and O increasing of 0.17|e|at the most active site of reduction-OV predicted.It is worth noting thatΔG of NORR(NO reduction reaction)shows good performance(thermodynamically spontaneous reaction)to synthesize ammonia and water at room temperature in the theoretical calculation.展开更多
In this paper,a novel BC_(3)N_(2)monolayer has been found with a graphene-like structure using the developed particle swarm optimization algorithm in combination with ab initio calculations.The predicted structure mee...In this paper,a novel BC_(3)N_(2)monolayer has been found with a graphene-like structure using the developed particle swarm optimization algorithm in combination with ab initio calculations.The predicted structure meets the thermodynamical,dynamical,and mechanical stability requirements.Interestingly,the BC_(3)N_(2)plane shows a metallic character.Importantly,BC_(3)N_(2)has an in-plane stiffness comparable to that of graphene.We have also investigated the adsorption characteristics of CO_(2)on pristine monolayer and Mo functionalized monolayer using density functional theory.Subsequently,electronic structures of the interacting systems(CO_(2)molecule and substrates)have been preliminarily explored.The results show that Mo/BC_(3)N_(2)has a stronger adsorption capacity towards CO_(2)comparing with the pristine one,which can provide a reference for the further study of the CO_(2)reduction mechanism on the transition metal-functionalized surface as well as the new catalyst’s design.展开更多
Nitric oxide reduction to ammonia by electrocatalysis is the potential application in the elimination of smog and energy conversion. In this work, the feasibility of the application of two-dimensional metal borides(MB...Nitric oxide reduction to ammonia by electrocatalysis is the potential application in the elimination of smog and energy conversion. In this work, the feasibility of the application of two-dimensional metal borides(MBenes) in nitric oxide electroreduction reaction(NOER) was investigated through density functional theory calculations. Including the geometry and electronic structure of five kinds of MBenes, the adsorption of NO on the surface of these substrates, the selective adsorption of hydrogen protons during the hydrogenation process, and the overpotential in the electrocatalytic ammonia synthesis process. As a result, Mn B exhibited the most favorable catalytic performance according to the associative pathways,which is thermodynamically performed spontaneously, and WB has a minimum overpotential of 0.37 V vs. RHE in the process of ammonia production according to the dissociative pathway. Overall, our work is the first to explore the electrocatalytic NO through the dissociative mechanism to synthesize ammonia in-depth and proves that MBenes are efficient NO electrocatalytic ammonia synthesis catalysts. These research results provide a new direction for the development of electrocatalytic ammonia synthesis experimentally and theoretically.展开更多
[18_(T)D$IF]Ammonia(NH_(3))is considered an attractive candidate as a clean,highly efficient energy carrier.The electrocatalytic nitrogen reduction reaction(NRR)can reduce energy input and carbon footprint;therefore,r...[18_(T)D$IF]Ammonia(NH_(3))is considered an attractive candidate as a clean,highly efficient energy carrier.The electrocatalytic nitrogen reduction reaction(NRR)can reduce energy input and carbon footprint;therefore,rational design of effective electrocatalysts is essential for achieving high-efficiency electrocatalytic NH_(3)synthesis.Herein,we report that the enzymatic mechanism is the more favourable pathway for NRR,due to lower limiting potential(-0.44 V),lower free energy(only 0.02 eV)of the first hydrogenation step(*N–N to*NH–N),and more electron transfer from Fe_(2)B_(2)to the reaction species.In addition,both vacancies and dopants can be helpful in reducing the reaction energy barrier of the potential-determining step.Therefore,we have demonstrated that Fe_(2)B_(2)is a potential new candidate for effective NRR and highlighted its potential for applications in electrocatalytic NH_(3)synthesis.展开更多
Smart contact lens has drawn extensive research interests due to the noninvasive real-time detection of the human body to provide biomedical information for health management.However,it has been difficult to accuratel...Smart contact lens has drawn extensive research interests due to the noninvasive real-time detection of the human body to provide biomedical information for health management.However,it has been difficult to accurately measure the physiological signals in tears,and the use of external power source has also hindered the future applications.Here,we demonstrated an organic electrochemical transistor based multiplexed sensors self-powered by the organic solar cells(OSCs).The integrated device was fabricated via simple process including solution blade-coating and thermal evaporation.OSCs were optimized to provide optimal operation voltage for the sensors that exhibit semilog-linear response to the glucose and calcium ions in tear fluids without any peripheral circuits.The sensing signals can be transmitted to the laptop wirelessly through a near filed communication unit.This integrated self-powered multiplexed sensing device will provide real-time monitoring of the biomarkers in tears,prospected to be installed on the smart contact lens for the early detection and diagnosis of diabetes.展开更多
Porcine epidemic diarrhea virus(PEDV),an enteropathogenic coronavirus,has catastrophic impacts on the global pig industry.However,there remain no effective drugs against PEDV infection.In this study,we utilized a reco...Porcine epidemic diarrhea virus(PEDV),an enteropathogenic coronavirus,has catastrophic impacts on the global pig industry.However,there remain no effective drugs against PEDV infection.In this study,we utilized a recombinant PEDV expressing renilla luciferase(PEDV-Rluc)to screen potential anti-PEDV agents from an FDAapproved drug library in Vero cells.Four compounds were identified that significantly decreased luciferase activity of PEDV-Rluc.Among them,niclosamide was further characterized because it exhibited the most potent antiviral activity with the highest selectivity index.It can efficiently inhibit viral RNA synthesis,protein expression and viral progeny production of classical and variant PEDV strains in a dose-dependent manner.Time of addition assay showed that niclosamide exhibited potent anti-PEDV activity when added simultaneously with or after virus infection.Furthermore,niclosamide significantly inhibited the entry stage of PEDV infection by affecting viral internalization rather than viral attachment to cells.In addition,a combination with other small molecule inhibitors of endosomal acidification enhanced the anti-PEDV effect of niclosamide in vitro.Taken together,these findings suggested that niclosamide is a novel antiviral agent that might provide a basis for the development of novel drug therapies against PEDV and other related pathogenic coronavirus infections.展开更多
CO_(2)is a representative prototype model in energy and environmental fields.Many factors for CO_(2)capture and activation have been investigated extensively but the research on the influence of thermal conductivity i...CO_(2)is a representative prototype model in energy and environmental fields.Many factors for CO_(2)capture and activation have been investigated extensively but the research on the influence of thermal conductivity is still absence.We herein have calculated many properties,including dipole moment,electric structure,and adsorption energies,on Pt doped graphene and 2D BC_(3)N_(2)substrates and served the thermal conductivity as the bridge.Our results have demonstrated that the lower (higher) thermal conductivity for 2D BC_(3)N_(2)(graphene) corresponds to larger (lower) dipole moment,which is beneficial for CO_(2)activation (capture) process.Our research have not only revealed the dominant role of heat conductivity for CO_(2)capture and activation,but also paved the way for further catalyst design of various areas.展开更多
Ammonia borane(NHsBH3,AB)is an ideal raw material of hydrogen production with higher hydrogen storage capacity.In this paper,the catalytic processes of AB dehydrogenation were described from different ways,including t...Ammonia borane(NHsBH3,AB)is an ideal raw material of hydrogen production with higher hydrogen storage capacity.In this paper,the catalytic processes of AB dehydrogenation were described from different ways,including thermal dehydrogenation,hydrolysis,methanolysis,photocatalysis and photopiezoelectric synergy catalysis with experimental research and theoretical calculations.Catalyst models include bulk materials,two-dimensional materials,nanocluster particles and single/diatomic structures.Among them,the proportion of H2 released is different,and the reaction conditions are also different,which are suitable for different application scenarios.Through this review,we could have a preliminary comprehensive understanding of AB dehydrogenation reaction.展开更多
In this paper,the process of ammonia borane(AB)hydrolysis generate H_(2) on the transition metal Fe@Co core-shell structure has been obtained.According to the different roles played by H_(2)O molecules and the number ...In this paper,the process of ammonia borane(AB)hydrolysis generate H_(2) on the transition metal Fe@Co core-shell structure has been obtained.According to the different roles played by H_(2)O molecules and the number of H_(2)O molecules involved,there are three schemes of reaction paths.RouteⅠdoes not involve the dissociation of H_(2)O molecules and all H atoms come from AB.Moreover,the H_(2)O molecule has no effect on the breaking of the B—H bond or the N—H bond.The reaction absorbs more heat during the formation of the second and third H_(2) molecules.RouteⅡincludes the dissociation of H_(2)O molecules and the cleavage of B—H or N—H bonds,respectively,and the reaction shows a slight exotherm.RouteⅢstarted from the break of the B—N bond and obtained 3H_(2) molecules through the participation of different numbers of H_(2)O molecules.After multiple comparative analyses,the optimal hydrolysis reaction path has been obtained,and the reaction process can proceed spontaneously at room temperature.展开更多
Neutrophil extracellular traps (NETs) participate in the rapid inhibition and clearance of pathogens during infection;however, the molecular regulation of NET formation remains poorly understood. In the current study,...Neutrophil extracellular traps (NETs) participate in the rapid inhibition and clearance of pathogens during infection;however, the molecular regulation of NET formation remains poorly understood. In the current study, we found that inhibition of the wild-type p53-induced phosphatase 1 (Wip1) significantly suppressed the activity of Staphylococcus aureus (S. aureus) and accelerated abscess healing in S. aureus-induced abscess model mice by enhancing NET formation. A Wip1 inhibitor significantly enhanced NET formation in mouse and human neutrophils in vitro. High-resolution mass spectrometry and biochemical assays demonstrated that Coro1a is a substrate of Wip1. Further experiments also revealed that Wip1 preferentially and directly interacts with phosphorylated Coro1a than compared to unphosphorylated inactivated Coro1a. The phosphorylated Ser426 site of Coro1a and the 28–90 aa domain of Wip1 are essential for the direct interaction of Coro1a and Wip1 and for Wip1 dephosphorylation of p-Coro1a Ser426. Wip1 deletion or inhibition in neutrophils significantly upregulated the phosphorylation of Coro1a-Ser426, which activated phospholipase C and subsequently the calcium pathway, the latter of which promoted NET formation after infection or lipopolysaccharide stimulation. This study revealed Coro1a to be a novel substrate of Wip1 and showed that Wip1 is a negative regulator of NET formation during infection. These results support the potential application of Wip1 inhibitors to treat bacterial infections.展开更多
基金Supported by the National Natural Science Foundation of China(No.31872609)the Innovation Support Program for High-level Talents of Dalian City(No.2019RD12)+1 种基金the Key Research Project of Liaoning Provincial Department of Education in 2022(No.LJKZZ 20220091)the earmarked fund for CARS-49(CARS-49)。
文摘To adapt to the change of aquaculture workshop site,optimize the shape of aquaculture tanks and improve the utilization rate of breeding space,it is necessary to determine the appropriate length width ratio parameters of aquaculture tanks.In this paper,computational fluid dynamics(CFD)technology is adopted to study the flow field performance of aquaculture tanks with different L/B ratios(L:the length;B:the width,of aquaculture tank)and different jet direction conditions(lengthways jet and widthways jet).A three-dimensional numerical calculation model of turbulence in rounded rectangle aquaculture tanks in dual-diagonal-inlet layout was established.Jet directions are arranged lengthways and widthways,and the water flow velocity,resistance coefficient change,vorticity,etc.are analyzed under two working conditions.Results show that the flow field performance in aquaculture tank decreases with the increase of the L/B ratio.The flow field performed well when L/B was 1.0-1.3,sharply dropped at 1.4-1.6,and poor at 1.7-1.9.The results provided a theoretical basis for the design and optimization in flow field performance of the industrialized circulating aquaculture tanks.
基金Supported by the 2023 Central Government Finance Subsidy Project for Liaoning Fisheries,the Key Research Project of Liaoning Provincial Department of Education in 2022(No.LJKZZ20220091)the National Natural Science Foundation of China(No.31872609)+1 种基金the Innovation Support Program for High-level Talents of Dalian City(No.2019RD12)the earmarked fund for CARS-49。
文摘To improve the self-cleaning ability of aquaculture tank and the efficiency of circulating water,physical and numerical experiments were conducted on the influence of inlet structure on sewage discharge in a rounded square aquaculture tank with a single inlet.Based on the physical model of the tank,analysis of how inlet structure adjustment affects sewage discharge efficiency and flow field characteristics was conducted to provide suitable flow field conditions for sinkable solid particle discharge.In addition,an internal flow field simulation was conducted using the RNG k-εturbulence model in hydraulic drive mode.Then a solid-fluid multiphase model was created to investigate how the inlet structure affects sewage collection in the rounded square aquaculture tank with single inlet and outlet.The finding revealed that the impact of inlet structure is considerably affecting sewage collection.The conditions of C/B=0.07-0.11(the ratio of horizontal distance between the center of the inlet pipe and the tank wall(C)to length of the tank(B))andα=25°(αis the angle between the direction of the jet and the tangential direction of the arc angle)resulted in optimal sewage collection,which is similar to the flow field experiment in the rounded square aquaculture tank with single inlet and outlet.An excellent correlation was revealed between sewage collection and fluid circulation stability in the aquaculture tank.The present study provided a reference for design and optimization of circulating aquaculture tanks in aquaculture industry.
基金supported by the National Natural Science Foundation of China(Grant No.52076038,U22B20112,No.52106238)the Fundamental Research Funds for Central Universities(No.423162,B230201051).
文摘This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators and the dynamic performance of weight changes.A dynamic layered sorting allocation method is also proposed.The proposed evaluation method considers the power-limiting degree of the last cycle,the adjustment margin,and volatility.It uses the theory of weight variation to update the entropy weight coefficients of each indicator in real time,and then performs a fuzzy evaluation based on the membership function to obtain intuitive comprehensive evaluation results.A case study of a large-scale wind power base in Northwest China was conducted.The proposed evaluation method is compared with fixed-weight entropy and principal component analysis methods.The results show that the three scoring trends are the same,and that the proposed evaluation method is closer to the average level of the latter two,demonstrating higher accuracy.The proposed allocation method can reduce the number of adjustments made to wind farms,which is significant for the allocation and evaluation of wind power clusters.
基金National Natural Science Foundation of China,Grant/Award Number:52168059Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region,Grant/Award Number:NJYT23103Fundamental Research Funds in Universities of Inner Mongolia Autonomous Region,Grant/Award Number:2023QNJS159。
文摘Due to the network planning of subways and their surrounding structures,increasingly more overlapping shields with a small curve radius have been constructed. A newly constructed upper tunnel partly overlaps a lower one, leading to the extremely complex uplift of the lower tunnel caused by the construction of a new tunnel. Based on the shield-driven project that runs from the Qinghe Xiaoyingqiao Station to the Qinghe Station in Beijing, which adopts the reinforcement measures of interlayer soil grouting and steel supports on site, in this study, the uplift pattern of the lower tunnel and the stress characteristics of steel supports were investigated through numerical simulations and on-site monitoring.The study results show that among all tunnel segments, the first segment of the shield witnesses a maximum uplift displacement that increases with the horizontal space between tunnels. On using either interlayer soil grouting or steel-ring bracing reinforcement, the uplift of the tunnel lining exceeds the control value;by contrast,when these two measures are jointly applied, the uplift of the tunnel lining does not exceed a maximum value of 4.87 mm, which can satisfy the requirements of deformation control. Under these two joint measures, the soil strength between two stacked shield tunnels can be enhanced and the uplift deformation can be restricted with the interlayer soil grouting. Also, the segmental deformation and overall stability of the existing tunnel can be controlled with the temporary steel supports.The deformation of circumferential supports and segments is closely related to each other, and the segmental uplift is controlled by H-shaped steel supports. With the increase in the horizontal space between twin shields, the effect of the construction would gradually weaken, accompanied by a gradual reduction of the stresses of steel supports. These findings provide a valuable reference for the engineering design and safe construction of overlapping shield tunnels with a small curve radius.
文摘This paper describes the shortcomings and difficulties of power company security construction, such as site management for construction site security monitoring personnel is limited, in recent years , rural power grids and Urban Network alteration Faced with new situation. The use of advanced science and technology and communication terminal in order to better strengthen the means of power construction site safety supervision, improve the level of safety production supervision, design and development of a new electrical safety job site intelligent monitoring devices. The device consists of three parts of the remote wide angle 360 degrees of portable video surveillance equipment and 3G smart terminal equipment and portable battery. Through the application of such a device, professionals can remotely monitor the construction job site safety, diagnose, and effectively improve the security of the electricity sector management and reduce security risks and personnel on-site monitoring costs for improving the security of the entire power industry field operations with significance.
文摘In this paper, at first the appearance background electricity grid in the rural areas of west China, and its meaning as well as the concept and structure of DG technologies are resented, and a DG technologies mode of development in the rural areas of west China is given. The development ideas and the future development direction of DG in are compared and summarized. At last, the significance of DG in future development of the rural areas of west China is prospected and some problems to be especially considered in the domestic research on DG technologies are put forward.
基金support from the Natural Sciences Foundation of China(82374035)the CAMS Innovation Fund for Medical Sciences(CIFMS,2022-I2M-1-017,China).
文摘A pair of coumarin-based polycyclic meroterpenoid enantiomers(+)/(-)-gerbeloid A[(+)-1a and(-)-1b]were isolated from the medicinal plant Gerbera piloselloides,which have a unique caged oxatricyclo[4.2.2.0^(3,8)]decene scaffold.Their planar and three-dimensional structures were exhaustively characterized by comprehensive spectroscopic data and X-ray diffraction analysis.Guided by the hypothetical biosynthetic pathway,the biomimetic synthesis of racemic 1 was achieved using 4-hydroxy-5-methylcoumarin and citral as the starting material via oxa-6πelectrocyclization and intramolecular[2+2]photocycloaddition.Subsequently,the results of the biological activity assay demonstrated that both(+)-1a and(-)-1b exhibited potent lipid-lowering effects in 3T3-L1 adipocytes and the high-fat diet zebrafish model.Notably,the lipid-lowering activity of(+)-1a is better than that of(-)-1b at the same concentration,and molecular mechanism study has shown that(+)-1a and(-)-1b impairs adipocyte differentiation and stimulate lipolysis by regulating C/EBPα/PPARγsignaling and Perilipin signaling in vitro and in vivo.Our findings provide a promising drug model molecule for the treatment of obesity.
基金funded by the National Natural Science Foundation of China(No.21603109)the Henan Joint Fund of the National Natural Science Foundation of China(No.U1404216)the Scientific Research Program Funded by Shaanxi Provincial Education Department(No.20JK0676)。
文摘In order to reduce the greenhouse effect caused by the rapid increase of CO_(2)concentration in the atmosphere,it is necessary to develop more efficient,controllable,and highly sensitive adsorbing materials.In this study,the adsorption behavior of CO_(2)on BC_(3)nanosheets under an external electric field was explored based on density functional theory(DFT).It was found that CO_(2)experienced a transition from physisorption to chemisorption in the electric field range of 0.0060-0.0065 a.u..In addition,the adsorption/desorption of CO_(2)is reversible and can be precisely controlled by switching on/off at the electric field of 0.0065 a.u..The selective adsorption of CO_(2)/H_(2)/CH_(4)by BC_(3)can also be used to realize gas separation and purification under different electric fields.This study highlighted the potential application of BC_(3)nanosheets as a high-performance,controllable material for CO_(2)capture,regeneration,and separation in an electric field.
基金funded by the Natural Science Foundation of China (No. 21603109)the Henan Joint Fund of the National Natural Science Foundation of China (No. U1404216)the Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 20JK0676)。
文摘The photocatalytic nitrogen reduction reaction(NRR) has mild reaction conditions and only requires sunlight energy as a driving force to replace the traditional ammonia synthesis method. We herein investigate the catalytic activity and selectivity on Penta-B_(2)C for NRR by using density functional theory calculations. Penta-B_(2)C is a semiconductor with an indirect bandgap(2.328 e V) and is kinetically stable based on molecular dynamic simulations. The optical absorption spectrum of Penta-B;C is achieved in the ultraviolet and visible range. Effective light absorption is more conducive to generate photo-excited electrons and improving photocatalytic performances. Rich B atoms as activation sites in Penta-B_(2)C facilitate capturing N_(2). The activated N_(2)molecule prefers the side-on adsorption configuration on Penta-B_(2)C, which facilitates the subsequent reduction reaction. Among considered NRR mechanisms on Penta-B_(2)C, the best pathway prefers the enzymatic mechanism, only required a low onset potential of 0.23 V. The hydrogen evolution reaction is inhibited when the hydrogen adsorption concentration is increased or N_(2)molecules first occupy the adsorption sites. Our results indicate Penta-B_(2)C is a highly reactive and selective photocatalyst for NRR. Our work provides theoretical insights into the experiments and has guiding significance to synthesize efficient NRR photocatalysts.
基金funded by the Natural Science Foundation of China(No.21603109)the Henan Joint Fund of the National Natural Science Foundation of China(No.U1404216)+1 种基金the Scientific Research Program Funded by Shaanxi Provincial Education Department(No.20JK0676)the Special Fund of Tianshui Normal University,China(No.CXJ2020-08)。
文摘To reduce the greenhouse effect caused by the surgery of nitrogen-oxides concentration in the atmosphere and develop a future energy carrier of renewables,it is very critical to develop more efficient,controllable,and highly sensitive catalytic materials.In our work,we proposed that nitric oxide(NO),as a supplement to N_(2) for the synthesis of ammonia,which is equipped with a lower barrier.And the study highlighted the potential of CeO_(2)(111)nanosheets with La doping and oxygen vacancy(OV)as a high-performance,controllable material for NO capture at the site of Vo site,and separation the process of hydrogenation.We also reported that the E_(ads) of-1.12 eV with horizontal adsorption and the Bader charge of N increasing of 0.53|e|and O increasing of 0.17|e|at the most active site of reduction-OV predicted.It is worth noting thatΔG of NORR(NO reduction reaction)shows good performance(thermodynamically spontaneous reaction)to synthesize ammonia and water at room temperature in the theoretical calculation.
基金supported by the National Natural Science Foundation of China(Nos.21603109,U1404216,U1904179,U1404608)the Special Fund of Tianshui Normal University,China(Grant No.CXJ2020-08)+1 种基金the Key Science Fund of Educational Department of Henan Province of China(Nos.19A140013,20B140010)Shaanxi Provincial Education Department Serves Local Scientific Research Program(Nos.19JC020,20JK0676)。
文摘In this paper,a novel BC_(3)N_(2)monolayer has been found with a graphene-like structure using the developed particle swarm optimization algorithm in combination with ab initio calculations.The predicted structure meets the thermodynamical,dynamical,and mechanical stability requirements.Interestingly,the BC_(3)N_(2)plane shows a metallic character.Importantly,BC_(3)N_(2)has an in-plane stiffness comparable to that of graphene.We have also investigated the adsorption characteristics of CO_(2)on pristine monolayer and Mo functionalized monolayer using density functional theory.Subsequently,electronic structures of the interacting systems(CO_(2)molecule and substrates)have been preliminarily explored.The results show that Mo/BC_(3)N_(2)has a stronger adsorption capacity towards CO_(2)comparing with the pristine one,which can provide a reference for the further study of the CO_(2)reduction mechanism on the transition metal-functionalized surface as well as the new catalyst’s design.
基金funded by the Natural Science Foundation of China (No.21603109)the Henan Joint Fund of the National Natural Science Foundation of China (No.U1404216)+1 种基金the Special Fund of Tianshui Normal University,China (No.CXJ2020-08)the Scientific Research Program Funded by Shaanxi Provincial Education Department (No.20JK0676)。
文摘Nitric oxide reduction to ammonia by electrocatalysis is the potential application in the elimination of smog and energy conversion. In this work, the feasibility of the application of two-dimensional metal borides(MBenes) in nitric oxide electroreduction reaction(NOER) was investigated through density functional theory calculations. Including the geometry and electronic structure of five kinds of MBenes, the adsorption of NO on the surface of these substrates, the selective adsorption of hydrogen protons during the hydrogenation process, and the overpotential in the electrocatalytic ammonia synthesis process. As a result, Mn B exhibited the most favorable catalytic performance according to the associative pathways,which is thermodynamically performed spontaneously, and WB has a minimum overpotential of 0.37 V vs. RHE in the process of ammonia production according to the dissociative pathway. Overall, our work is the first to explore the electrocatalytic NO through the dissociative mechanism to synthesize ammonia in-depth and proves that MBenes are efficient NO electrocatalytic ammonia synthesis catalysts. These research results provide a new direction for the development of electrocatalytic ammonia synthesis experimentally and theoretically.
基金the National Natural Science Foundation of China for financial support(Nos.21603109,11904081 and21876104)supported by Henan Joint Funds of the National Natural Science Foundation of China(No.U1404216)+1 种基金the Special Fund of Tianshui Normal University,China(No.CXJ2020-08)the Scientific Research Program Funded by Shaanxi Provincial Education Department(No.20JK0676)。
文摘[18_(T)D$IF]Ammonia(NH_(3))is considered an attractive candidate as a clean,highly efficient energy carrier.The electrocatalytic nitrogen reduction reaction(NRR)can reduce energy input and carbon footprint;therefore,rational design of effective electrocatalysts is essential for achieving high-efficiency electrocatalytic NH_(3)synthesis.Herein,we report that the enzymatic mechanism is the more favourable pathway for NRR,due to lower limiting potential(-0.44 V),lower free energy(only 0.02 eV)of the first hydrogenation step(*N–N to*NH–N),and more electron transfer from Fe_(2)B_(2)to the reaction species.In addition,both vacancies and dopants can be helpful in reducing the reaction energy barrier of the potential-determining step.Therefore,we have demonstrated that Fe_(2)B_(2)is a potential new candidate for effective NRR and highlighted its potential for applications in electrocatalytic NH_(3)synthesis.
基金support from National Natural Science Foundation of China (21704082,21875182)Key Scientific and Technological Innovation Team Project of Shaanxi Province (2020TD-002)+1 种基金111 project 2.0 (BP2018008)X-ray data was acquired at beamlines 7.3.3 at the Advanced Light Source,which is supported by the Director,Office of Science,Office of Basic Energy Sciences,of the U.S.Department of Energy under Contract No.DE-AC02-05CH11231.
文摘Smart contact lens has drawn extensive research interests due to the noninvasive real-time detection of the human body to provide biomedical information for health management.However,it has been difficult to accurately measure the physiological signals in tears,and the use of external power source has also hindered the future applications.Here,we demonstrated an organic electrochemical transistor based multiplexed sensors self-powered by the organic solar cells(OSCs).The integrated device was fabricated via simple process including solution blade-coating and thermal evaporation.OSCs were optimized to provide optimal operation voltage for the sensors that exhibit semilog-linear response to the glucose and calcium ions in tear fluids without any peripheral circuits.The sensing signals can be transmitted to the laptop wirelessly through a near filed communication unit.This integrated self-powered multiplexed sensing device will provide real-time monitoring of the biomarkers in tears,prospected to be installed on the smart contact lens for the early detection and diagnosis of diabetes.
基金supported by the National Natural Science Foundation of China(Grant No.31602033 and 32172839)the China Scholarship Council under grant 201908410129.
文摘Porcine epidemic diarrhea virus(PEDV),an enteropathogenic coronavirus,has catastrophic impacts on the global pig industry.However,there remain no effective drugs against PEDV infection.In this study,we utilized a recombinant PEDV expressing renilla luciferase(PEDV-Rluc)to screen potential anti-PEDV agents from an FDAapproved drug library in Vero cells.Four compounds were identified that significantly decreased luciferase activity of PEDV-Rluc.Among them,niclosamide was further characterized because it exhibited the most potent antiviral activity with the highest selectivity index.It can efficiently inhibit viral RNA synthesis,protein expression and viral progeny production of classical and variant PEDV strains in a dose-dependent manner.Time of addition assay showed that niclosamide exhibited potent anti-PEDV activity when added simultaneously with or after virus infection.Furthermore,niclosamide significantly inhibited the entry stage of PEDV infection by affecting viral internalization rather than viral attachment to cells.In addition,a combination with other small molecule inhibitors of endosomal acidification enhanced the anti-PEDV effect of niclosamide in vitro.Taken together,these findings suggested that niclosamide is a novel antiviral agent that might provide a basis for the development of novel drug therapies against PEDV and other related pathogenic coronavirus infections.
基金funded by the Natural Science Foundation of China (Nos.21603109,52006130)the Henan Joint Fund of the National Natural Science Foundation of China (No.U1404216)+3 种基金China Postdoctoral Science Foundation (Nos.2020M670321,2021T140359)the Special Fund of Tianshui Normal University,China (No.CXJ2020-08)the Scientific Research Program Funded by Shaanxi Provincial Education Department (No.20JK0676)The Youth Innovation Team of Shaanxi Universities (No.21JP017)。
文摘CO_(2)is a representative prototype model in energy and environmental fields.Many factors for CO_(2)capture and activation have been investigated extensively but the research on the influence of thermal conductivity is still absence.We herein have calculated many properties,including dipole moment,electric structure,and adsorption energies,on Pt doped graphene and 2D BC_(3)N_(2)substrates and served the thermal conductivity as the bridge.Our results have demonstrated that the lower (higher) thermal conductivity for 2D BC_(3)N_(2)(graphene) corresponds to larger (lower) dipole moment,which is beneficial for CO_(2)activation (capture) process.Our research have not only revealed the dominant role of heat conductivity for CO_(2)capture and activation,but also paved the way for further catalyst design of various areas.
基金funded by the Natural Science Basic Research Program of Shaanxi(Nos.2022JQ-108 and 2022JQ-096)the National Natural Science Foundation of China(No.22104079).
文摘Ammonia borane(NHsBH3,AB)is an ideal raw material of hydrogen production with higher hydrogen storage capacity.In this paper,the catalytic processes of AB dehydrogenation were described from different ways,including thermal dehydrogenation,hydrolysis,methanolysis,photocatalysis and photopiezoelectric synergy catalysis with experimental research and theoretical calculations.Catalyst models include bulk materials,two-dimensional materials,nanocluster particles and single/diatomic structures.Among them,the proportion of H2 released is different,and the reaction conditions are also different,which are suitable for different application scenarios.Through this review,we could have a preliminary comprehensive understanding of AB dehydrogenation reaction.
基金funded by the Natural Science Foundation of China(Nos.21603109,U1404216)the Scientific Research Program Funded by Shaanxi Provincial Education Department(No.20JK0676)。
文摘In this paper,the process of ammonia borane(AB)hydrolysis generate H_(2) on the transition metal Fe@Co core-shell structure has been obtained.According to the different roles played by H_(2)O molecules and the number of H_(2)O molecules involved,there are three schemes of reaction paths.RouteⅠdoes not involve the dissociation of H_(2)O molecules and all H atoms come from AB.Moreover,the H_(2)O molecule has no effect on the breaking of the B—H bond or the N—H bond.The reaction absorbs more heat during the formation of the second and third H_(2) molecules.RouteⅡincludes the dissociation of H_(2)O molecules and the cleavage of B—H or N—H bonds,respectively,and the reaction shows a slight exotherm.RouteⅢstarted from the break of the B—N bond and obtained 3H_(2) molecules through the participation of different numbers of H_(2)O molecules.After multiple comparative analyses,the optimal hydrolysis reaction path has been obtained,and the reaction process can proceed spontaneously at room temperature.
基金supported by grants from the National Natural Science Foundation for General and Key Programs(31930041,YZ)the National Key Research and Development Program of China(2017YFA0105002,2017YFA0104401,2017YFA0104402,YZ)+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences(XDA16030301,YZ)the Doctoral Research Foundation Project of Affiliated Hospital of Guizhou Medical University(gyfybsky-2022-1,WZ)。
文摘Neutrophil extracellular traps (NETs) participate in the rapid inhibition and clearance of pathogens during infection;however, the molecular regulation of NET formation remains poorly understood. In the current study, we found that inhibition of the wild-type p53-induced phosphatase 1 (Wip1) significantly suppressed the activity of Staphylococcus aureus (S. aureus) and accelerated abscess healing in S. aureus-induced abscess model mice by enhancing NET formation. A Wip1 inhibitor significantly enhanced NET formation in mouse and human neutrophils in vitro. High-resolution mass spectrometry and biochemical assays demonstrated that Coro1a is a substrate of Wip1. Further experiments also revealed that Wip1 preferentially and directly interacts with phosphorylated Coro1a than compared to unphosphorylated inactivated Coro1a. The phosphorylated Ser426 site of Coro1a and the 28–90 aa domain of Wip1 are essential for the direct interaction of Coro1a and Wip1 and for Wip1 dephosphorylation of p-Coro1a Ser426. Wip1 deletion or inhibition in neutrophils significantly upregulated the phosphorylation of Coro1a-Ser426, which activated phospholipase C and subsequently the calcium pathway, the latter of which promoted NET formation after infection or lipopolysaccharide stimulation. This study revealed Coro1a to be a novel substrate of Wip1 and showed that Wip1 is a negative regulator of NET formation during infection. These results support the potential application of Wip1 inhibitors to treat bacterial infections.