The chlorine evolution reaction(CER)is a crucial step in the production of chlorine gas and active chlorine by chlor-alkali electrolysis.Currently,the endeavor to fabricate electrodes capable of yielding high current ...The chlorine evolution reaction(CER)is a crucial step in the production of chlorine gas and active chlorine by chlor-alkali electrolysis.Currently,the endeavor to fabricate electrodes capable of yielding high current density at minimal overpotential remains a central challenge in advancing the realm of chlorine evolution reactions.Here,we grow TiO_(2)and RuO_(2)on MXene@carbon cloth(CC)through the favorable affinity and induced deposition effect between the surface functional groups of MXene and the metal.A self-supported electrode(RuTiO_(2)/MXene@CC)with strong binding at the electrocatalyst-support interface and weak adhesion at electrocatalyst-bubble interface is constructed.The RuTiO_(2)/MXene@CC can reduce the electron density of RuO_(2)by regulating the electron redistribution at the heterogeneous interface,thus enhancing the adsorption of Cl−.RuTiO_(2)/MXene@CC could achieve a high current density of 1000 mA·cm^(−2)at a small overpotential of 220 mV,superior to commercial dimensionally stable anodes(DSA).This study provides a new strategy for constructing efficient CER catalysts at high current density.展开更多
The deformation structure of soft sediments has always been a research hotspot,which is of great significance for analyzing the tectonic and sedimentary evolution background of a basin,as well as the physical properti...The deformation structure of soft sediments has always been a research hotspot,which is of great significance for analyzing the tectonic and sedimentary evolution background of a basin,as well as the physical properties of reservoirs.Previous studies have reported that a large number of soft sediment deformation structures are developed in the western part of Liaohe depression.In this study,through core observation and thin section identification,various types of deformation structures are identified in the core samples which are collected from the upper Es4 in the Leijia region,western sag of Liaohe depression,such as liquefied dikes,liquefied breccia,convoluted laminae,annular bedding,synsedimentary faults,vein structures,etc.Based on the characteristics of core structure,single well profile and continuous well profile,combined with the regional background,this study clarifies that the deformation structure of soft sediments in the study area is mainly caused by seismic action.It is found that the permeability and porosity of deformation layers in the study area are higher than those of the undeformation layers,which proves that the deformation structure of soft sediments has a good effect on improving the physical properties of reservoirs.展开更多
基金the National Natural Science Foundation of China(Nos.21971132,52072197,and 52272222)Youth Innovation and Technology Foundation of Shandong Higher Education Institutions,China(No.2019KJC004)+5 种基金Major Scientific and Technological Innovation Project(No.2019JZZY020405)Major Basic Research Program of Natural Science Foundation of Shandong Province(No.ZR2020ZD09)Taishan Scholar Young Talent Program(No.tsqn201909114)the 111 Project of China(No.D20017)Shandong Province Double-Hundred Talent Plan(No.WST2020003)State Key Laboratory of Heavy Oil Processing(No.SKLHOP202202006).
文摘The chlorine evolution reaction(CER)is a crucial step in the production of chlorine gas and active chlorine by chlor-alkali electrolysis.Currently,the endeavor to fabricate electrodes capable of yielding high current density at minimal overpotential remains a central challenge in advancing the realm of chlorine evolution reactions.Here,we grow TiO_(2)and RuO_(2)on MXene@carbon cloth(CC)through the favorable affinity and induced deposition effect between the surface functional groups of MXene and the metal.A self-supported electrode(RuTiO_(2)/MXene@CC)with strong binding at the electrocatalyst-support interface and weak adhesion at electrocatalyst-bubble interface is constructed.The RuTiO_(2)/MXene@CC can reduce the electron density of RuO_(2)by regulating the electron redistribution at the heterogeneous interface,thus enhancing the adsorption of Cl−.RuTiO_(2)/MXene@CC could achieve a high current density of 1000 mA·cm^(−2)at a small overpotential of 220 mV,superior to commercial dimensionally stable anodes(DSA).This study provides a new strategy for constructing efficient CER catalysts at high current density.
基金funded by the National Natural Science Foundation“Event Sedimentation in Lacustrine Organic-Rich Mudrock:Taking the Chang 7-8 Member of the Ordos Basin as an Example”(Grant No.41802130).
文摘The deformation structure of soft sediments has always been a research hotspot,which is of great significance for analyzing the tectonic and sedimentary evolution background of a basin,as well as the physical properties of reservoirs.Previous studies have reported that a large number of soft sediment deformation structures are developed in the western part of Liaohe depression.In this study,through core observation and thin section identification,various types of deformation structures are identified in the core samples which are collected from the upper Es4 in the Leijia region,western sag of Liaohe depression,such as liquefied dikes,liquefied breccia,convoluted laminae,annular bedding,synsedimentary faults,vein structures,etc.Based on the characteristics of core structure,single well profile and continuous well profile,combined with the regional background,this study clarifies that the deformation structure of soft sediments in the study area is mainly caused by seismic action.It is found that the permeability and porosity of deformation layers in the study area are higher than those of the undeformation layers,which proves that the deformation structure of soft sediments has a good effect on improving the physical properties of reservoirs.