β-Cyclodextrin (β-CD) and its derivatives functionalized magnetic nanoparticles (MNPs) with high saturated magnetism were fabricated successfully by an effective grafting method. The resultant carboxymethyl/hydr...β-Cyclodextrin (β-CD) and its derivatives functionalized magnetic nanoparticles (MNPs) with high saturated magnetism were fabricated successfully by an effective grafting method. The resultant carboxymethyl/hydroxy- propyl/sulfobutyl ether-β-CD-MNPs (CM/HP/SBE-β-CD-MNPs) nanocomposites were characterized by the TEM, FTIR, DLS, Zeta potential, XRD and VSM. In addition, the loading and release performance of the as-prepared nanocarriers for the hydrophobic anti-cancer drug curcumin was also investigated. The results revealed that the SBE-fl-CD-MNPs possessed the highest loading and release capacity in comparison with other two nanosystems. Cellular uptake and imaging suggested that the SBE-β-CD-MNPs entered into the cell, and curcumin could be suc-cessfully delivered into the cell by SBE-β-CD-MNPs nanocarrier. Moreover, cell toxicity experiments demonstrated the SBE-β-CD-MNPs were non-toxic, while curcumin loaded SBE-β-CD-MNPs showed high potential to kill the HepG2 cells. The as-prepared magnetic composites were expected to expand their potential applications in bio- medical field.展开更多
Identification of epitopes targeted following virus infection or vaccination can guide vaccine design and development of therapeutic interventions targeting functional sites,but can be laborious.Herein,we employed pep...Identification of epitopes targeted following virus infection or vaccination can guide vaccine design and development of therapeutic interventions targeting functional sites,but can be laborious.Herein,we employed peptide microarrays to map linear peptide epitopes(LPEs)recognized following SARS-CoV-2 infetion and vaccination.LPEs detected by nonhuman primate(NHP)and patient IgMs after SARS-CoV-2 infection extensively overlapped,localized to functionally important virus regions,and aligned with reported neutralizing antibody binding sies.Similar LPE overlap occurred atfter infection and vaccination,with LPE clusters specifc to each stimulus,where strong and conserved LPEs mapping to sites known or likely to inhibit spike protein function.Vaccine-specifc LPEs tended to map to sites known or likely to be afected by structural changes induced by the proline substitutions in the mRNA vaccine's S protein.Mapping LPEs to regions of known functional importance in this manner may acelerate vaccine evaluation and discovery of targets for sile secific therapeutic interventions.展开更多
文摘β-Cyclodextrin (β-CD) and its derivatives functionalized magnetic nanoparticles (MNPs) with high saturated magnetism were fabricated successfully by an effective grafting method. The resultant carboxymethyl/hydroxy- propyl/sulfobutyl ether-β-CD-MNPs (CM/HP/SBE-β-CD-MNPs) nanocomposites were characterized by the TEM, FTIR, DLS, Zeta potential, XRD and VSM. In addition, the loading and release performance of the as-prepared nanocarriers for the hydrophobic anti-cancer drug curcumin was also investigated. The results revealed that the SBE-fl-CD-MNPs possessed the highest loading and release capacity in comparison with other two nanosystems. Cellular uptake and imaging suggested that the SBE-β-CD-MNPs entered into the cell, and curcumin could be suc-cessfully delivered into the cell by SBE-β-CD-MNPs nanocarrier. Moreover, cell toxicity experiments demonstrated the SBE-β-CD-MNPs were non-toxic, while curcumin loaded SBE-β-CD-MNPs showed high potential to kill the HepG2 cells. The as-prepared magnetic composites were expected to expand their potential applications in bio- medical field.
基金supported by the Department of Defense(grant number W8IxwH19i0926)National Institute of Allergy and Infectious Diseases contract(grant number_HHSN2722017000331)+1 种基金National Institute of Child Health and Human Development grant(grant numbers R01HD090927 and R01HDi03511)National Center for Research Resources and the Ofice of Research Infrastructure Programs(grant numbers OD011104).
文摘Identification of epitopes targeted following virus infection or vaccination can guide vaccine design and development of therapeutic interventions targeting functional sites,but can be laborious.Herein,we employed peptide microarrays to map linear peptide epitopes(LPEs)recognized following SARS-CoV-2 infetion and vaccination.LPEs detected by nonhuman primate(NHP)and patient IgMs after SARS-CoV-2 infection extensively overlapped,localized to functionally important virus regions,and aligned with reported neutralizing antibody binding sies.Similar LPE overlap occurred atfter infection and vaccination,with LPE clusters specifc to each stimulus,where strong and conserved LPEs mapping to sites known or likely to inhibit spike protein function.Vaccine-specifc LPEs tended to map to sites known or likely to be afected by structural changes induced by the proline substitutions in the mRNA vaccine's S protein.Mapping LPEs to regions of known functional importance in this manner may acelerate vaccine evaluation and discovery of targets for sile secific therapeutic interventions.