Numerous scientists are in the pursuit of energy storage materials with high energy and high power density by assembly of electrochemically active materials into conductive scaffolds,owing to the emerging need for nex...Numerous scientists are in the pursuit of energy storage materials with high energy and high power density by assembly of electrochemically active materials into conductive scaffolds,owing to the emerging need for next-generation energy storage devices.In this architectures,the active materials bonded to the conductive scaffold can provide a robust and free-standing structure,which is crucial to the fabrication of materials with high gravimetric capacity.Thus,hierarchical copper-cobalt-nickel ternary oxide(CuCoNi-oxide) nanowire arrays grown from copper foam were successfully fabricated as freestanding anode materials for lithium ion batteries(LIBs).CuCoNi-oxide nanowire arrays could provide more active sites owing to the hyperbranched structure,leading to a better specific capacity of 1191 mAh/g,cycle performance of 73% retention in comparison to CuO nanowire structure,which exhibited a specific capacity of 1029 mAh/g and capacity retention of 43%,respectively.展开更多
基金financially supported by the National Natural Science Foundation of China (No.21975163)China Postdoctoral Science Foundation (No.2018M633125)。
文摘Numerous scientists are in the pursuit of energy storage materials with high energy and high power density by assembly of electrochemically active materials into conductive scaffolds,owing to the emerging need for next-generation energy storage devices.In this architectures,the active materials bonded to the conductive scaffold can provide a robust and free-standing structure,which is crucial to the fabrication of materials with high gravimetric capacity.Thus,hierarchical copper-cobalt-nickel ternary oxide(CuCoNi-oxide) nanowire arrays grown from copper foam were successfully fabricated as freestanding anode materials for lithium ion batteries(LIBs).CuCoNi-oxide nanowire arrays could provide more active sites owing to the hyperbranched structure,leading to a better specific capacity of 1191 mAh/g,cycle performance of 73% retention in comparison to CuO nanowire structure,which exhibited a specific capacity of 1029 mAh/g and capacity retention of 43%,respectively.