A preliminary investigation on short-wavelength ablation mechanisms of poly(methyl methacrylate)(PMMA) and poly(1,4-phenylene ether ether-sulfone)(PPEES) by extreme ultraviolet(EUV) radiation at 13.5 nm using a table-...A preliminary investigation on short-wavelength ablation mechanisms of poly(methyl methacrylate)(PMMA) and poly(1,4-phenylene ether ether-sulfone)(PPEES) by extreme ultraviolet(EUV) radiation at 13.5 nm using a table-top laserproduced plasma from a gas-puff target at LLG(Gttingen) and at 46.9 nm by a 10 Hz desktop capillary discharge laser operated at the Institute of Physics(Prague) is presented.Ablation of polymer materials is initiated by photoinduced polymer chain scissions.The ablation occurs due to the formation of volatile products by the EUV radiolysis removed as an ablation plume from the irradiated material into the vacuum.In general,cross-linking of polymer molecules can compete with the chain decomposition.Both processes may influence the efficiency and quality of micro(nano)structuring in polymer materials.Wavelength is a critical parameter to be taken into account when an EUV ablation process occurs,because different wavelengths result in different energy densities in the near-surface region of the polymer exposed to nanosecond pulses of intense EUV radiation.展开更多
Light sources with high radiance and tailored coherence properties are highly desirable for imaging applications in the mid-infrared and terahertz(THz) spectral regions, which host a large variety of molecular absorpt...Light sources with high radiance and tailored coherence properties are highly desirable for imaging applications in the mid-infrared and terahertz(THz) spectral regions, which host a large variety of molecular absorptions and distinctive fingerprints to be exploited for sensing and tomography. Here, we characterize the spatial coherence of random multimode THz quantum cascade lasers(QCLs) emitting > m W optical power per mode and showing low divergence(10°–30°), performing a modified Young’s double-slit experiment. Partial spatial coherence values ranging between 0.16 and 0.34 are retrieved, depending on the specific degree of disorder. These values are significantly lower than those(0.82) of conventional Fabry–Perot THz QCLs exploiting an identical active region quantum design. We then incorporate the devised low spatial coherence random lasers into a confocal imaging system with micrometer spatial resolution and demonstrate notable imaging performances, at THz frequencies,against spatial cross talk and speckles.展开更多
基金the support of the Ministry of Education,Youth and Sports to the HiLASE (CZ.1.05/2.1.00/01.0027)DPSSLasers (CZ.1.07/2.3.00/20.0143) projects+5 种基金co-financed from the European Regional Development-Fundsupported by the grant RVO 68407700financial support by the ‘Deutsche Forschungs-gemeinschaft’ within the Sonderforschungsbereich 755 ‘Nanoscale Photonic Imaging’the Czech Science Foundation (14-29772S)from EU COST MPO1203from the Ministry of Education,Youth and Sports,COST CZ VES14 LD14032 are also appreciated
文摘A preliminary investigation on short-wavelength ablation mechanisms of poly(methyl methacrylate)(PMMA) and poly(1,4-phenylene ether ether-sulfone)(PPEES) by extreme ultraviolet(EUV) radiation at 13.5 nm using a table-top laserproduced plasma from a gas-puff target at LLG(Gttingen) and at 46.9 nm by a 10 Hz desktop capillary discharge laser operated at the Institute of Physics(Prague) is presented.Ablation of polymer materials is initiated by photoinduced polymer chain scissions.The ablation occurs due to the formation of volatile products by the EUV radiolysis removed as an ablation plume from the irradiated material into the vacuum.In general,cross-linking of polymer molecules can compete with the chain decomposition.Both processes may influence the efficiency and quality of micro(nano)structuring in polymer materials.Wavelength is a critical parameter to be taken into account when an EUV ablation process occurs,because different wavelengths result in different energy densities in the near-surface region of the polymer exposed to nanosecond pulses of intense EUV radiation.
文摘Light sources with high radiance and tailored coherence properties are highly desirable for imaging applications in the mid-infrared and terahertz(THz) spectral regions, which host a large variety of molecular absorptions and distinctive fingerprints to be exploited for sensing and tomography. Here, we characterize the spatial coherence of random multimode THz quantum cascade lasers(QCLs) emitting > m W optical power per mode and showing low divergence(10°–30°), performing a modified Young’s double-slit experiment. Partial spatial coherence values ranging between 0.16 and 0.34 are retrieved, depending on the specific degree of disorder. These values are significantly lower than those(0.82) of conventional Fabry–Perot THz QCLs exploiting an identical active region quantum design. We then incorporate the devised low spatial coherence random lasers into a confocal imaging system with micrometer spatial resolution and demonstrate notable imaging performances, at THz frequencies,against spatial cross talk and speckles.