期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Circulation Pattern Controls of Summer Temperature Anomalies in Southern Africa
1
作者 chibuike chiedozie ibebuchi Cameron C.LEE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期341-354,共14页
This study investigates the relationship between circulation patterns and austral summer temperature anomalies in southern Africa. The results show that the formation of continental lows tends to increase the thicknes... This study investigates the relationship between circulation patterns and austral summer temperature anomalies in southern Africa. The results show that the formation of continental lows tends to increase the thickness of the lower atmosphere. Further, the distinct variabilities of high and low pressure under the circulation types, influence air mass advection from the adjacent oceans, as well as atmospheric stability over land. Stronger anticyclonic circulation at the western branch of the Mascarene high-pressure system enhances the low-level cold air advection by southeast winds,decreases the thickness, and lowers the temperature over a majority of the land in southern Africa. Conversely, a weaker Mascarene High, coupled with enhanced cyclonic activity in the southwest Indian Ocean increases low-level warm air advection and increases temperature anomalies over vast regions in southern Africa. The ridging of a closed South Atlantic anticyclone at the southern coast of southern Africa results in colder temperatures near the tip of southern Africa due to enhanced low-level cold air advection by southeast winds. However, when the ridge is weak and westerly winds dominate the southern coast of southern Africa, these areas experience temperature increases. The northward track of the Southern Hemisphere mid-latitude cyclone, which can be linked to the negative Southern Annular Mode, reduces the temperature in the southwestern part of southern Africa. Also, during the analysis period, El Ni?o was associated with temperature increases over the central parts of southern Africa;while the positive Indian Ocean dipole was linked to a temperature increase over the northeastern, northwestern, and southwestern parts of southern Africa. 展开更多
关键词 TEMPERATURE circulation types Subtropical Indian Ocean dipole Southern Annular Mode El Ni?o Indian Ocean dipole Mascarene High South Atlantic anticyclone
下载PDF
Circulation Patterns Linked to the Positive Sub-Tropical Indian Ocean Dipole 被引量:1
2
作者 chibuike chiedozie ibebuchi 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第1期110-128,共19页
The positive phase of the subtropical Indian Ocean dipole(SIOD)is one of the climatic modes in the subtropical southern Indian Ocean that influences the austral summer inter-annual rainfall variability in parts of sou... The positive phase of the subtropical Indian Ocean dipole(SIOD)is one of the climatic modes in the subtropical southern Indian Ocean that influences the austral summer inter-annual rainfall variability in parts of southern Africa.This paper examines austral summer rain-bearing circulation types(CTs)in Africa south of the equator that are related to the positive SIOD and the dynamics through which specific rainfall regions in southern Africa can be influenced by this relationship.Four austral summer rain-bearing CTs were obtained.Among the four CTs,the CT that featured(i)enhanced cyclonic activity in the southwest Indian Ocean;(ii)positive widespread rainfall anomaly in the southwest Indian Ocean;and(iii)low-level convergence of moisture fluxes from the tropical South Atlantic Ocean,tropical Indian Ocean,and the southwest Indian Ocean,over the south-central landmass of Africa,was found to be related to the positive SIOD climatic mode.The relationship also implies that positive SIOD can be expected to increase the amplitude and frequency of occurrence of the aforementioned CT.The linkage between the CT related to the positive SIOD and austral summer homogeneous regions of rainfall anomalies in Africa south of the equator showed that it is the principal CT that is related to the inter-annual rainfall variability of the south-central regions of Africa,where the SIOD is already known to significantly influence its rainfall variability.Hence,through the large-scale patterns of atmospheric circulation associated with the CT,the SIOD can influence the spatial distribution and intensity of rainfall over the preferred landmass through enhanced moisture convergence. 展开更多
关键词 subtropical Indian Ocean dipole circulation types RAINFALL South Indian Ocean moisture convergence
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部