The eukaryotic genome is organized into functionally and structurally distinct domains, representing regulatory unitsfor gene expression and chromosome behavior. DNA sequences that mark the border between adjacent dom...The eukaryotic genome is organized into functionally and structurally distinct domains, representing regulatory unitsfor gene expression and chromosome behavior. DNA sequences that mark the border between adjacent domains are theinsulators or boundary elements, which are required in maintenance of the function of different domains. Some insula-tors need others enable to play insulation activity. Chromatin domains are defined by distinct sets of post-translationallymodified histones. Recent studies show that these histone modifications are also involved in establishment of sharpchromatin boundaries in order to prevent the spreading of distinct domains. Additionally, in some loci, the high-orderchromatin structures for long-range looping interactions also have boundary activities, suggesting a correlation betweeninsulators and chromatin loop domains. In this review, we will discuss recent progress in the field of chromatin domainboundaries.展开更多
基金This work was supported by the grant from the National Natural Science Foundation of China(No.30393110).
文摘The eukaryotic genome is organized into functionally and structurally distinct domains, representing regulatory unitsfor gene expression and chromosome behavior. DNA sequences that mark the border between adjacent domains are theinsulators or boundary elements, which are required in maintenance of the function of different domains. Some insula-tors need others enable to play insulation activity. Chromatin domains are defined by distinct sets of post-translationallymodified histones. Recent studies show that these histone modifications are also involved in establishment of sharpchromatin boundaries in order to prevent the spreading of distinct domains. Additionally, in some loci, the high-orderchromatin structures for long-range looping interactions also have boundary activities, suggesting a correlation betweeninsulators and chromatin loop domains. In this review, we will discuss recent progress in the field of chromatin domainboundaries.